Determination of amino acids in ice samples

Fumio NAKAZAWA¹, Keiichi OHTA², Naomi HARADA³, Koji FUJITA⁴ and Masayoshi NAKAWO⁵

¹Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
²Department of Ecosystem Studies, School of Environmental Science, University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga Pref. 522-8533, Japan
³Japan Agency for Marine-Earth Science and Technology, 2–15 Natsushima-cho, Yokosuka-City, Kanagawa 236-0061, Japan
⁴Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
⁵Research Institute for Humanity and Nature, 335 Takashima-cho, Marutamachi-dori Kawaramachi nishi-iru, Kamigyo-ku, Kyoto 602-0878, Japan

(Received October 4, 2004; Revised manuscript received November 30, 2004)

Abstract

This study investigates amino acid concentrations and compositions in ice as a preliminary approach for applying amino acid analysis to ice core study. For the amino acid analysis, 0.425 to 0.750 kg ice samples are used. The ices from Antarctica have 16.8 and 18.3 nmol kg⁻¹ of amino acids and these concentrations are close to laboratory blank levels, while the ice from the Chongce Ice Cap in China has 160 nmol kg⁻¹ of amino acids. Therefore, the analysis for Antarctic ice is estimated to need more than several kg of ice. In contrast, the analysis from the Chongce Ice Cap should be reducible to only several hundred grams of ice because the concentrations in this cap are higher than those in Antarctica. Further, amino acid sources are present in glacier surroundings of temperate regions, whereas polar regions are far from sources. Serine, aspartic acid and alanine are the major components in the samples. However, the amino acid compositions show variation with each sample.

1. Introduction

Ionic species, such as inorganic ions and light carboxylic acids, in ice cores have provided important information on past climatic and environmental conditions. The chemical species yield data on historical events including biogenic emission, biomass burning, anthropogenic emission and volcanic eruption (e.g., Hammer, 1977; Hammer et al., 1980; Legrand and Angelis, 1996; Olivier et al., 2003). However, there are some other candidates for the source tracers in cases when interpretation is difficult. For example, natural events, such as volcanic eruptions and large forest fires, increase concentrations of chloride, nitrate and sulfate ions in the atmosphere. In addition, anthropogenic effects such as biomass burning and fossil fuel combustion can also increase the atmospheric concentrations of these constituents.

In contrast, amino acids that build proteins apparently originate from and are abundant in living organisms, for example, approximately 50% of the human body’s dry weight is protein (McMurry and Castellion, 1999). Moreover, amino acids contained in glacier ices seem to originate mainly from microorganisms, such as snow algae and bacteria, that breed on glacier surfaces in summer season (Kohshima, 1987, 1989; Ling and Seppelt, 1990, 1993; Yoshimura et al., 1997; Takeuchi et al., 2001), plant products, such as pollen, in glacier surroundings (Koerner et al., 1988; Bourgeois, 1990, 2000; Liu et al., 1998; Reese et al., 2003; Nakazawa et al., 2004) and the bacteria in precipitation (Herlihy et al., 1987; Sattler et al., 2001; Mace et al., 2003). Thus, the amino acids may have good environmental information in ice core study. Since these biological activities increase in summer season and decrease in winter, amino acid-rich layers in an ice core may indicate summer layers. In addition, amino acid concentrations in each summer layer may be useful as a good marker of meteorological conditions such as temperature and solar radiation that affect these activities. However, no previous study has reported the amino acids in glacier ice. Therefore, as a preliminary approach to ice core research, this study aims to survey the level of amino acid concentrations in ice from the Antarctic ice sheet and Chongce Ice Cap in central Asia, and to compare their compositions.
2. Sampling sites and sample preparation

Ice core sampling was conducted at two distinct sites: Asuka camp in East Antarctica (71°31’S, 24°8’E; 930 m a.s.l.) and Chongce Ice Cap in the West Kunlun Mountains, China (35°14’N, 81°07’E, 6327 m a.s.l.). Ice blocks were taken from the surface of an iceberg off Syowa Station (69°00’S, 39°35’E) in the Antarctic Ocean. One section was collected from each ice core; from the Asuka core, the increment between 100.8 and 101.3 m depth, while from the Chongce core, the increment between 2.8 and 3.0 m depth were used. For the amino acid analysis, 0.750, 0.500 and 0.425 kg ice blocks were used for the Asuka ice, the iceberg ice and the Chongce ice, respectively.

To prevent contamination by laboratory controls, precleaned glasswares, which include filters, were used in all laboratory work. The glasswares were prepared by washing in alkaline detergent, placing in 1 N HCl overnight followed by rinsing with organic-free water obtained with a Milli-Q system and then heating in a furnace at 450 °C for 3 to 4 h. Additionally, to eliminate contamination of each sample, about 1 cm of the surface was scraped off with a clean knife in a cold room, and then the sample was melted in a beaker. The first melted ice used to wash the surface of the ice samples was discarded. This procedure was repeated 3 to 5 times, depending on the sample. The melted ice discarded in this way came to 0.145 to 0.110 kg. After the ice was completely melted, the melt water was immediately filtrated through 47 mm GF/F glass fiber filters with a pore size of 0.7 μm.

Subsequently, the samples were separated into two portions, a filter sample and filtrate sample. These 6 sub-samples (for amino acid analysis) were hydrolyzed with 6N HCl at 105 °C for 22 h. The HCl supernatant was then transferred to a flask and dried under vacuum. After drying, the dried residue was desalted using cation exchange resin (Dowex 50W-X8), derivatized with o-phthalaldehyde and then analyzed by gradient reversed-phase high-performance liquid chromatography (HPLC) with UV fluorescence detection in order to determine the total hydrolyzable amino acid content of the ices.

A laboratory procedural blank were also analyzed. For particulate amino acids, a new GF/F glass fiber filter (diameter: 47 mm; pore size: 0.7 μm) was hydrolyzed and the following procedure was the same as that for samples. In contrast, for dissolved amino acids, 4-ml of the organic-free water was concentrated in a flask under vacuum, and passed through the cation exchange resin. The following procedure was the same as mentioned above.

A detection system for HPLC and working gradient conditions used for amino acid determination were summarized in Table 1 and 2 respectively. Twelve amino acids were measured in this study (Table 3).

<table>
<thead>
<tr>
<th>HPLC</th>
<th>Shimadzu LC-10AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector</td>
<td>Fluorescence detector RF-10AXL (350–460 nm)</td>
</tr>
<tr>
<td>Integrator</td>
<td>Shimadzu chromatopac GR7Ae plus</td>
</tr>
<tr>
<td>Column</td>
<td>GL Science Intersil ODS-3 (150 mm L, 4.6 mm ID, 5 μm particle size)</td>
</tr>
<tr>
<td>Guard column</td>
<td>GL Science Intersil ODS-3 (50 mm L, 4.6 mm ID, 5 μm particle size)</td>
</tr>
<tr>
<td>Column temperature</td>
<td>40°C</td>
</tr>
<tr>
<td>Eluent</td>
<td>E1: 5 mM Na₂HPO₄·12H₂O/5 mM NaH₂PO₄·2H₂O (pH 7.05)</td>
</tr>
<tr>
<td>Flow-rate</td>
<td>1.0 mL min⁻¹</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program</th>
<th>Time (min)</th>
<th>E1 (%)</th>
<th>E2 (%)</th>
<th>E3 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1</td>
<td>0.01</td>
<td>95</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Program 2</td>
<td>4.0</td>
<td>85</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>80</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>73</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>18.0</td>
<td>70</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>25.0</td>
<td>55</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30.0</td>
<td>50</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>42.0</td>
<td>35</td>
<td>65</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>42.0</td>
<td>30</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>45.0</td>
<td>25</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>51.0</td>
<td>20</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>51.0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>52.0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>84.0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>84.0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>84.0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The program 1 was used for the particulate and dissolved fractions of the blank sample, the particulate fraction of the Asuka sample, and the particulate fraction of the Chongce sample. The program 2 was used for the dissolved fraction of the Asuka sample, the particulate and dissolved fractions of the iceberg sample, and the dissolved fraction of the Chongce sample.
ofitslowtemperature. Thereforethelevel of amino acid concentrations in Antarctic ice should be generally low.

The Chongce sample shows that Glu, Ala, Ser and Asp are the major components of the particulate fraction and comprise 62% of the total. In contrast, Val, Ala, Ser, Thr and Asp are the major components of the dissolved fraction and are 71% of the total. The total concentration in the particulate in the Chongce ice is much higher than those of the Asuka and the iceberg samples, specifically, 13 times that of the Asuka and 24 times that of the iceberg, even though the dissolved matter in the ices from the three sites have similar and blank levels.

The difference in particulate amino acid concentrations between the Antarctica and Chongce ices seems to be attributable to the difference in the source strength in two regions. The ice samples in lower latitudinal ice caps and glaciers (between about 60°N and 60°S) typically contain higher concentrations of nutrients, such as water-soluble chemical species, than that from the polar ice sheets (e.g., Wagenbach, 1989; Clausen and Langway, 1989; Lyons et al., 1991). The higher concentrations play the more important role in the breeding of snow algae. Moreover, on glacier surfaces in lower latitudes, some surface melting occurs in the summer season, and snow algae grow in the meltwater (Pollock, 1970; Yoshimura et al., 2000). However, the surface of polar ice sheets is virtually lifeless because of the lack of meltwater, even though viable microbial cells and spores are present (Catranis and Starmar, 1991). Thus, the local growth of snow algae may cause the higher concentration of particulate amino acids in Chongce ice compared to that in Antarctic ice.

In addition, the wind-blown-particulate amino acids such as in pollen, may also contribute to the Chongce Ice Cap. Ice cores from lower latitude ice caps and glaciers that are typically within a few tens of kilometers from vegetation sources contain more than 1000 grains L−1 of pollen (Ambach et al., 1966; Haeberli et al., 1983; Liu et al., 1998, Reese et al., 2003; Nakazawa
et al., 2004), whereas the pollen of polar ice sheets mostly originates from sources hundreds to thousands of kilometers away. Thus, the pollen concentration in ice is typically only 10 to 100 grains L\(^{-1}\) (McAndrews, 1984; Short and Holdsworth, 1985; Koerner and Bourgeois, 1988; Bourgeois, 1990, 2000). Judging from the above, the ice from lower latitudinal ice caps and glaciers can be expected to contain enough particulate amino acids for analysis. Thus, the sample volume may be reducible to about several hundred grams considering the laboratory procedural blank if the ice from lower latitude ice caps and glaciers has a concentration similar to that of the Chongce ice sample.

In contrast, the various ice from the polar ice sheets may be difficult to analyze using only several hundred grams of ice samples. This study used the 0.750 and 0.500 kg ice samples for the analysis of Antarctic ices, thereby showing that concentrations of both particulate and dissolved amino acids are at the blank level. This fact seems to be due to few sources of amino acids in situ and in the surroundings. It is therefore concluded that more than several kg of ice samples would be needed for analysis in order to be well above the blank level. However, ice core samples are typically limited, and it is therefore essential to secure enough ice volume for ice core study in the polar ice sheets of such as Antarctica.

Ser, Asp and Ala are the major components in 5 out of the 6 sub-samples (Fig. 1). However the amino acid compositions show variation with each sample. The three amino acids were also found to be major compounds in soil organic matter, pollen, marine algae and marine bacteria (e.g., Auclair and Janieson, 1948; Bieberdorf et al., 1961; Gupta and Reuszer, 1967; Simon and Azam, 1989; Cowie and Hedges, 1992; Cao and Xiang, 1995; Senwo and Tabatabai, 1998), although the amino acid composition differs by type. The exact cause of the differences in amino acid com-

![Fig. 1. Amino acid composition in ice samples. (a) Particulate amino acids in the Antarctic Asuka core at a depth of 100.8 to 101.3 m; (b) Dissolved amino acids in the Antarctic Asuka core; (c) Particulate amino acids in the Antarctic iceberg; (d) Dissolved amino acids in the Antarctic iceberg; (e) Particulate amino acids in the Chinese Chongce ice at a depth of 2.8 to 3.0 m; (f) Dissolved amino acids in the Chinese Chongce ice. Abbreviation: Glu (glutamic acid), Ala (alanine), Val (valine), Gly (glycine), Ile (isoleucine), Ser (serine), Thr (threonine), Arg (arginine), Asp (aspartic acid), Met (methionine), Phe (phenylalanine), Tyr (tyrosine).]
position in the ice is not yet known. In particular, the amino acid composition in the particulate fraction of the Chongce sample may relate to some origin of amino acids. Thus, further research is required to ascertain whether these differences are great enough to have practical significance.

4. Conclusion

This study investigates the concentrations and compositions of amino acids in ice samples from three sites. We conclude that a large ice sample (more than several kg) would be needed for analysis of Antarctic ice, such as the Asuka core and iceberg. Consequently, it is essential to secure enough sample volume for continuous analysis in ice core studies. In contrast, we conclude that the amount of several hundred grams of ice is needed for amino acid analysis of the lower latitudinal ice caps and glaciers, like the Chongce Ice Cap of the West Kunlun Mountains, due to the short distance from amino acid sources, such as snow algae, bacteria and pollen. Therefore, amino acid analysis in ice cores from lower latitude regions seems to be easier than that in those from the polar regions.

On the other hand, the cause of the different amino acid compositions among the samples is an unsettled question. The amino acid composition, especially that in the particulate fraction of the Chongce sample, may relate to the sources of amino acids, and allow us to more easily provide further information to interpret the past climate and environmental conditions. Thus, there is room for further investigation on this point.

Acknowledgments

We would like to thank JARE30 for providing the ice samples from Antarctica and the iceberg. Thanks are also due to N. Azuma of Nagoya University for providing the density data from the Asuka ice core, and to an anonymous reviewer for his helpful comments to improve the manuscript. The field research and analysis were supported by Grant-in-Aid for Scientific Research (Project Nos. 12878087 and 13373006) and the 21st Century COE Program (No. G-4, Nagoya University) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References


Liu, K.B., Yao, Z. and Thompson, L.G. (1998): A pollen record of Holocene climatic changes from the Dunde ice cap,