論文

中国西部・七一氷河における表面の雪と氷 および降水の化学組成

三 宅 隆 之^{1*}, 植 竹 淳^{1,2}, 的 場 澄 人³, 坂井亜規子⁴, 藤 田 耕 史⁴, 藤 井 理 行¹, 姚 檀 棟⁵, 中 尾 正 義⁶

要 旨

アイスコアからの過去の気候・環境変動復元の手がかりとするため、2004 年 8 月・9 月に中国西部・ 七一氷河表面の雪と氷および降水を採取し、化学分析を行った。氷河表面の雪と氷の平均 pH は 7.07 だった. 総陽イオン濃度と総陰イオン濃度の差 (Δ C) と Ca²⁺濃度と Mg²⁺濃度の和の間の相関は r= 0.98 と,非常に高かった. Ca²⁺, Mg²⁺ と Δ C は土壌や黄土中の炭酸塩鉱物を起源とし、氷河表面の雪 と氷の pH への影響が示唆された. これらは天山の氷河と同傾向で、七一氷河の化学組成は、乾燥・ 半乾燥地のダストの強い影響が考えられた. 氷河表面の Na⁺濃度と Cl⁻濃度の相関は r=0.93 と高 く、Na⁺/Cl⁻比が平均 1.00±0.13 だったことから、主要な起源は岩塩と考えられた. 降水と氷河表面 の雪と氷のイオン成分の割合を比較すると、Ca²⁺, Mg²⁺, Δ C がいずれも優先し、かつ降水に比べ雪 と氷で顕著に大きくなった. これらは融解-再凍結過程によるダストからの溶解と乾性沈着の影響と 考えられた. 主成分分析の結果から、NH4⁺を除く氷河表面の化学成分は、土壌・ダスト起源、人為活 動起源、岩塩起源に区分可能と推察された.

キーワード:七一氷河,雪,氷,降水,化学組成,ダスト Key words: Qiyi Glacier, snow, ice, precipitation, chemical composition, dust

1. はじめに

高山域および極域に存在する氷河・氷床上の雪 および氷に含まれる化学成分は、大気を通して沈

- 1 情報・システム研究機構国立極地研究所 〒190-8518 東京都立川市緑町 10-3
- 2 情報・システム研究機構新領域融合研究センター 〒105-0001 東京都港区虎ノ門 4-3-13 ヒューリッ ク神谷町ビル2階
- 3 北海道大学低温科学研究所 〒060-0819 札幌市北区北 19 条西 8 丁目
- 4 名古屋大学大学院環境学研究科
 〒464-8601 名古屋市千種区不老町 F3-1 (200)
- 5 中国科学院西蔵高原研究所 北京 10085 中国
- 6人間文化研究機構 〒105-0001 東京都港区虎ノ門 4-3-13 ヒューリッ ク神谷町ビル2階
- * 連絡先:tmiyakeq2011@gmail.com

着したものであり、過去の気候・環境変動の情報 を与えるため重要である.これらの化学成分に は、ガスおよびエアロゾル起源のイオン成分、海 塩粒子、土壌・風送ダスト(砂塵)や微量金属成 分等が含まれ、さらに氷には温室効果気体を含む 空気自体も含まれる.氷河・氷床は、このような 化学成分や空気を、過去から現在まで環境シグナ ルとして保存するすぐれた記録媒体であり、これ らの解析から、大気や陸域、海域環境等の変動の 情報が得られる. このため氷河・氷床での掘削で 得られるアイスコアは、化学成分をはじめ、物理 的,生物学的成分も含めた様々な解析に用いられ, 過去の気候・環境変動復元研究が進められてきた (Thompson et al., 1989; Legrand and Mayewski, 1997; Petit et al., 1999 など). アイスコアを用いた 過去の気候・環境変動復元研究において、氷河・

氷床表面での化学成分の情報は、過去の気候・環 境変動を解釈する際の手がかりとなり、またアイ スコア解析の解釈を高めるために非常に重要であ る.氷河・氷床表面の化学成分は、起源および大 気循環の影響を受ける.さらに堆積後にも、ガ ス・エアロゾルの乾性沈着や雪や氷から揮発、日 射、さらに温暖な地域の氷河では融解と言った 様々な影響を受ける.このため、高山域や極域の 氷河・氷床での雪の化学成分に関する研究が精力 的に進められてきた(Wake *et al.*, 1990, 1993; Sun *et al.*, 1998; Ginot *et al.*, 2001; Marinoni *et al.*, 2001; Kang *et al.*, 2004; Bertler *et al.*, 2005 など).

経済発展の続く中国は、化石燃料の消費量増加 に伴い,様々な大気汚染物質の排出量が増加し, 今後も増加が予測されている (Ohara et al., 2007). 例えば、1980年代以降一貫して人為活動増大に起 因する窒素沈着量の増加が観測され、特に窒素酸 化物 (NO_x) の増加が著しい (Liu et al., 2013). こ れら人為活動起源物質の増加を受け、中国国内の 降水は、特に南西部でその酸性化の進行が顕著で ある.一方,北京を含む北部からチベット高原を 含む西部では、酸性化の原因物質濃度に比較して 中和剤となる土壌や風送ダスト由来の Ca²⁺等の 濃度が高く,降水の pH は 5.6 以上に保たれてい る (Larssen et al., 2006). しかし近年チベット高 原の都市部では、降水の pH は7 程度と中性程度 ながら、徐々に降水酸性化の進行が報告され (Zhang et al., 2003a, b), 今後も経済発展の継続に よる酸性化の進行が懸念される.

「第3の極地」とも言われるチベット高原には, 数多くの氷河が存在する.このうち,チベット高 原の北縁に位置する祁連山脈の七一氷河(七月一 日氷河)は,1975年時点で面積2.871km²,長さ3. 8km,末端の標高4304m,最高点の標高5159m とされる比較的小型の氷河である(Pu *et al.*, 2005).七一氷河は1958年に観測されて以降,多 くの氷河学・水文学の研究が進められてきた(Pu *et al.*,2005).2000年代以降も,氷河変動観測 (Matsuda *et al.*,2004; Pu *et al.*,2005; Sakai *et al.*, 2006; Fujita *et al.*,2006)や気象・水文観測(Sakai *et al.*,2006a, b),雪氷生物観測(Takeuchi *et al.*, 2005; Uetake *et al.*,2006)等が行われている.これ らの結果から,七一氷河は過去50年で縮小し,そ の傾向は加速していることが明らかになっている (Sakai *et al.*, 2006c; Fujita *et al.*, 2006). 一方, 七一 氷河の化学組成に関して,融解水のイオン成分組 成(Wu *et al.*, 2009)や氷河表面の雪の有機化合物 (Li *et al.*, 2009, 2011)に関する報告はあるものの, 七一氷河表面の主要無機イオンに関する報告はほ とんどない.

本研究は乾燥・半乾燥地域に位置する祁連山脈 の七一氷河を対象として,過去の気候・環境変動 を解釈する際の手がかりとなる情報を得ることを 目的とした.そして氷河表面の雪と氷および降水 の化学成分分析を行った.これらの結果とチベッ ト高原周辺の他の氷河表面の雪の化学成分濃度と の比較から,当該地域における氷河表面の雪の化 学成分濃度の特徴,氷河表面の雪と氷および降水 の化学組成の相違点を検討した.さらに統計解析 から,氷河表面の雪と氷の化学成分の起源の推定 を行ったので報告する.

2. 採取地と方法

2.1 採取地と採取方法

試料を採取した氷河は,中国西部祁連山脈の七 一氷河 (39°15′N,97°45′E) である. 七一氷河と 採取地点を図1に示す。氷河表面の雪および氷 は, St 2, St 4, St 6, St 8-2, St 10, St 14 の 6 地 点で,2004年8月と9月に1回ずつ,各地点計2 回採取した. このうち St 8-2 および St 10 は Uetake et al. (2006) での試料採取地点と同一であ る. 表1に氷河上の採取地点の標高と採取日. 採 取時の表面状態を記した. 試料採取時の氷河表面 状態は、氷(Ice)では、融解した水と氷河表面の 最上層に薄いざらめ雪が存在していた. また新雪 (New snow) および雪 (Snow) は、いずれも表層 から数 cm 以上の深さがあり, 融解した水はな かった.新雪では存在しなかったが、雪では一部 ざらめ雪が見られた. 各採取地点で予め洗浄した ステンレススコップを用いて、洗浄済みのポリビ ンに氷河表面から深さ1cm 程度の雪または氷を 採取した.氷の場合,最上層のざらめ雪や融解し た水も再凍結氷や消耗域の氷と一緒に採取した. 新雪および雪の場合は、それぞれ新雪と雪のみ採 取し、下層の氷は採取しないよう注意した.1回 の採取で各地点7試料ずつ採取した.また七一氷

図1 七一氷河における試料採取地点.

河から北西に約4km離れたベースキャンプ(標高 3668m)で,2004年8月に降水を計7試料採取した.降水は,予め洗浄したポリエチレン製容器(約12cm×20cmの四角形)を野外に置き採取した.降水量は,採取した降水の体積が正確に測定できなかったため,七一氷河末端に設置された自動気象計の値を使用した.

採取後,氷河表面の雪および氷,降水試料はベー スキャンプに持ち帰り,メンブレンフィルター(ミ リポア製,親水性テフロンオムニポアメンブレン フィルター)で濾過した.その後試料を日本に輸 送し,国立極地研究所に到着後,分析直前まで低

Sampling Surface states of Altitude/m Sampling date site the Glacier St 2 4336 12 Aug. 2004 Ice 2 Sep. 2004 Ice St 4 4450 12 Aug. 2004 Ice 2 Sep. 2004 Ice 15 Aug. 2004 St 6 4542 Ice 5 Sep. 2004 New snow St 8-2 4613 15 Aug. 2004 Ice 5 Sep. 2004 New snow 4824 17 Aug. 2004 St 10 Ice 7 Sep. 2004 New snow 17 Aug. 2004 St 14 4860 Snow

7 Sep. 2004

Snow

表1 七一氷河表面の雪および氷試料採取地点の標 高,採取日および採取時の表面状態。

温室(-20℃)で冷凍保存した.

2.2 分析方法

試料は国立極地研究所にて,分析直前に解凍し, イオンクロマトグラフ (ダイオネクス製, DX-500) でイオン成分 (F⁻, Cl⁻, NO₃⁻, SO₄²⁻, Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺) 濃度を, pH メーター (東亜電波工業製, HM-60S) で pH を,電気伝導 度メーター (東亜電波工業製, CM-40S) で電気伝 導度 (EC) を, それぞれ測定した. H⁺濃度は, pH 値から計算した. なおイオン成分では,他に NO₂⁻, PO₄³⁻等も分析可能だったが,濃度が検 出限界以下の試料が多く,以下の考察には使用し なかった.

2.3 統計解析

データの相関係数および主成分分析の計算は, 統計解析ソフト (SPSS 社製, PASW Statistics Ver. 18.0) で行った.主成分分析は,各成分濃度 からバリマックス回転を加え,抽出ファクターの 累積寄与率が80%を超え,最少となるファクター 数を抽出した (三宅ら, 2000).

結果と考察

3.1 氷河表面の化学組成の特徴

表2に七一氷河表面の雪および氷の分析結果を 示す.これらは、採取した地点につき、8月、9月 に、それぞれ平均値±標準偏差で示した.また総 陽イオン濃度(TC)と総陰イオン濃度(TA)を それぞれ次のように定義し、合わせて示した.

表	2	七一氷河	表面の雪お	よて	ブ氷の/	化学成分	濃度.
---	---	------	-------	----	------	------	-----

Site	Sampling date	n	pH	EC	F-		Cl-		NO ₃ -	SO4	2-	Total anions (TA)		
St 2	12 Aug. 2004	7	7.21 ± 0.14	2.39 ± 0.57	$0.22 \pm$	0.01	$25.5 \pm$	7.1	3.7 ± 0.0	4 10.7 \pm	3.9	40.1 ± 9.2		
	2 Sep. 2004	7	7.19 ± 0.25	1.78 ± 0.89	$0.31 \pm$	0.09	$19.0 \pm$	3.7	3.3 ± 0.3	$0 9.3 \pm$	3.4	32.0 ± 6.1		
St 4	12 Aug. 2004	7	7.20 ± 0.23	1.89 ± 0.88	$0.24 \pm$	0.06	$23.7 \pm$	12.6	2.3 ± 1	$5 6.3 \pm$	3.8	32.5 ± 14.2		
	2 Sep. 2004	7	6.99 ± 0.37	1.63 ± 1.36	$0.41 \pm$	0.12	$20.3 \pm$	6.0	5.6 ± 3	8 8.1 ±	3.6	34.5 ± 11.9		
St 6	15 Aug. 2004	7	7.33 ± 0.09	1.94 ± 0.56	$0.33 \pm$	0.06	$22.4 \pm$	7.2	6.9 ± 4	$4 10.9 \pm$	8.0	40.6 ± 13.6		
	5 Sep. 2004	7	7.12 ± 0.20	1.65 ± 0.54	$0.64 \pm$	0.06	$19.9 \pm$	5.5	7.1 ± 2	$1 10.9 \pm$	2.1	38.6 ± 7.1		
St 8-2	15 Aug. 2004	7	6.99 ± 0.25	1.29 ± 0.73	$0.22 \pm$	0.07	$15.0 \pm$	3.9	5.4 ± 2	5 4.8 ±	2.3	25.4 ± 6.6		
	5 Sep. 2004	7	7.03 ± 0.07	1.23 ± 0.27	$0.51 \pm$	0.12	$15.3 \pm$	2.3	6.0 ± 2	$0 9.1 \pm$	3.6	30.9 ± 5.5		
St 10	17 Aug. 2004	7	7.21 ± 0.16	1.83 ± 0.81	$0.37 \pm$	0.08	$17.2 \pm$	6.1	2.6 ± 1	$1 5.5 \pm$	3.2	$25.7~\pm~9.9$		
	7 Sep. 2004	7	7.04 ± 0.12	$2.70~\pm~0.83$	$1.1 \pm$	0.27	$32.7 \pm$	4.4	27.3 ± 6	$3 32.0 \pm$	8.1	$93.0\ \pm\ 13.8$		
St 14	17 Aug. 2004	7	6.98 ± 0.06	1.28 ± 0.13	$0.24 \pm$	0.01	$15.2 \pm$	1.6	10.7 ± 1	9 11.8 ±	2.7	37.9 ± 6.0		
	7 Sep. 2004	7	7.17 ± 0.09	2.07 ± 0.38	$1.0 \pm$	0.23	$24.4 \pm$	5.8	17.2 ± 7	$8 23.2 \pm$	5.8	$65.8~\pm~18.7$		
Mean ^{a)} ±SE)	84	$7.07^{b)} \pm 0.22$	1.81 ± 0.81	$0.46 \pm$	0.31	$20.9 \pm$	7.6	8.2 ± 7	8 11.9 ±	8.8	41.4 ± 21.2		
Max.			7.84	4.65	1.5		49.6		33.8	45.4		115		
Min.			6.69	0.72	0.14		9.3		0.20	1.3		12.1		
												Total antions		
Site	Sampling date	n	Na ⁺	$\mathrm{NH_4}^+$	K *		Mg ²⁺		Ca ²⁺	H ⁺		Total cations (TC)	ΔC	
Site St 2	Sampling date 12 Aug. 2004	n 7	Na ⁺ 28 ± 7.3	NH_4^+ 4.3 ± 0.7	K * 1.7 ±	0.72	Mg ²⁺ 23.4 ±	9.7	Ca ²⁺ 177 ± 49	H ⁺ 1 0.065 ±	0.028	Total cations (TC) 234 ± 61.5	ΔC 194 ±	54.5
Site St 2	Sampling date 12 Aug. 2004 2 Sep. 2004	n 7 7	Na ⁺ 28 ± 7.3 21 ± 5.7	NH_4^+ 4.3 ± 0.7 4.3 ± 1.6	K ⁺ 1.7 ± 2.4 ±	0.72 1.9	Mg ²⁺ 23.4 ± 23.3 ±	9.7 14.2	Ca ²⁺ 177 ± 49 161 ± 10	H^+ 1 0.065 ± 6 0.074 ±	0.028 0.035	Total cations (TC) 234 ± 61.5 212 ± 125	ΔC 194 ± 180 ±	54.5 120
Site St 2 St 4	Sampling date 12 Aug. 2004 2 Sep. 2004 12 Aug. 2004	n 7 7 7	Na ⁺ 28 ± 7.3 21 ± 5.7 24.0 ± 11.7	NH_4^+ 4.3 ± 0.7 4.3 ± 1.6 3.6 ± 3.8	K ⁺ 1.7 ± 2.4 ± 1.8 ±	0.72 1.9 1.4	Mg ²⁺ 23.4 ± 23.3 ± 20.2 ±	9.7 14.2 15.6	$Ca^{2+} \\ 177 \pm 49 \\ 161 \pm 10 \\ 170 \pm 10 \\ 170 \pm 10 \\ 100 $	H^+ 1 0.065 ± 6 0.074 ± 4 0.071 ±	0.028 0.035 0.036	Total cations (TC) 234 ± 61.5 212 ± 125 220 ± 126	ΔC 194 ± 180 ± 188 ±	54.5 120 124
Site St 2 St 4	Sampling date 12 Aug. 2004 2 Sep. 2004 12 Aug. 2004 2 Sep. 2004	n 7 7 7 7 7	Na ⁺ 28 ± 7.3 21 ± 5.7 24.0 ± 11.7 20.0 ± 10.8	NH_4^+ 4.3 ± 0.7 4.3 ± 1.6 3.6 ± 3.8 3.3 ± 1.9	K ⁺ 1.7 ± 2.4 ± 1.8 ± 2.1 ±	0.72 1.9 1.4 3.2	Mg ²⁺ 23.4 ± 23.3 ± 20.2 ± 21.9 ±	9.7 14.2 15.6 32.5	$Ca^{2+} \\ 177 \pm 49 \\ 161 \pm 10 \\ 170 \pm 1 \\ 139 \pm 1 \\ 139 \pm 10 \\ 100 \\ 1$	H^+ 1 0.065 ± 6 0.074 ± 4 0.071 ± 3 0.13 ±	0.028 0.035 0.036 0.061	$\begin{array}{c} \mbox{Total cations} \\ (TC) \\ \mbox{234 } \pm & 61.5 \\ \mbox{212 } \pm & 125 \\ \mbox{220 } \pm & 126 \\ \mbox{187 } \pm & 155 \end{array}$	ΔC 194 ± 180 ± 188 ± 152 ±	54.5 120 124 144
Site St 2 St 4 St 6	Sampling date 12 Aug. 2004 2 Sep. 2004 12 Aug. 2004 2 Sep. 2004 15 Aug. 2004	n 7 7 7 7 7 7	Na ⁺ 28 ± 7.3 21 ± 5.7 24.0 ± 11.7 20.0 ± 10.8 22 ± 7.7	NH_4^+ 4.3 ± 0.7 4.3 ± 1.6 3.6 ± 3.8 3.3 ± 1.9 2.1 ± 1.8	K ⁺ 1.7 ± 2.4 ± 1.8 ± 2.1 ± 2.1 ±	0.72 1.9 1.4 3.2 0.88	Mg ²⁺ 23.4 ± 23.3 ± 20.2 ± 21.9 ± 25.2 ±	9.7 14.2 15.6 32.5 4.9	Ca^{2+} 177 ± 49 161 ± 10 170 ± 1 139 ± 1 154 ± 71	H^{+} $1 0.065 \pm \\ 6 0.074 \pm \\ 4 0.071 \pm \\ 3 0.13 \pm \\ 6 0.048 \pm \\ \end{bmatrix}$	0.028 0.035 0.036 0.061 0.011	$\begin{array}{c} \mbox{Total cations} \\ (TC) \\ \mbox{234 } \pm \ 61.5 \\ \mbox{212 } \pm \ 125 \\ \mbox{220 } \pm \ 126 \\ \mbox{187 } \pm \ 155 \\ \mbox{206 } \pm \ 74.0 \\ \end{array}$	ΔC 194 ± 180 ± 188 ± 152 ± 165 ±	54.5 120 124 144 71.4
Site St 2 St 4 St 6	Sampling date 12 Aug. 2004 2 Sep. 2004 12 Aug. 2004 2 Sep. 2004 15 Aug. 2004 5 Sep. 2004	n 7 7 7 7 7 7 7	Na^{+} 28 ± 7.3 21 ± 5.7 24.0 ± 11.7 20.0 ± 10.8 22 ± 7.7 20 ± 5.1	NH_{4}^{+} 4.3 ± 0.7 4.3 ± 1.6 3.6 ± 3.8 3.3 ± 1.9 2.1 ± 1.8 4.8 ± 1.7	K^+ 1.7 ± 2.4 ± 1.8 ± 2.1 ± 2.1 ± 1.8 ±	0.72 1.9 1.4 3.2 0.88 1.1	Mg^{2+} 23.4 ± 23.3 ± 20.2 ± 21.9 ± 25.2 ± 15.7 ±	9.7 14.2 15.6 32.5 4.9 9.5	Ca^{2+} 177 ± 49 161 ± 10 170 ± 1 139 ± 1 154 ± 71 127 ± 58	H^{+} $1 0.065 \pm \\ 6 0.074 \pm \\ 4 0.071 \pm \\ 3 0.13 \pm \\ 6 0.048 \pm \\ 9 0.084 \pm \\ 9 0.084 \pm \\ $	0.028 0.035 0.036 0.061 0.011 0.035	$\begin{array}{c} \mbox{Total cations} \\ \mbox{(TC)} \\ \mbox{234 \pm $ 61.5$} \\ \mbox{212 \pm $ 125$} \\ \mbox{220 \pm $ 126$} \\ \mbox{187 \pm $ 155$} \\ \mbox{206 \pm $ 74.0$} \\ \mbox{170 \pm $ 72.9$} \end{array}$	ΔC 194 ± 180 ± 188 ± 152 ± 165 ± 131 ±	54.5 120 124 144 71.4 72.7
Site St 2 St 4 St 6 St 8-2	Sampling date 12 Aug. 2004 2 Sep. 2004 12 Aug. 2004 2 Sep. 2004 15 Aug. 2004 5 Sep. 2004 15 Aug. 2004	n 7 7 7 7 7 7 7 7	Na^{+} 28 ± 7.3 21 ± 5.7 24.0 ± 11.7 20.0 ± 10.8 22 ± 7.7 20 ± 5.1 16 ± 4.9	NH_4^+ 4.3 ± 0.7 4.3 ± 1.6 3.6 ± 3.8 3.3 ± 1.9 2.1 ± 1.8 4.8 ± 1.7 3.8 ± 1.1	K^{+} $1.7 \pm 2.4 \pm 1.8 \pm 2.1 \pm 2.1 \pm 1.8 \pm 1.6 \pm 1.6 \pm 1.6 \pm 1.6$	0.72 1.9 1.4 3.2 0.88 1.1 1.0	Mg^{2+} 23.4 ± 23.3 ± 20.2 ± 21.9 ± 25.2 ± 15.7 ± 23.6 ±	9.7 14.2 15.6 32.5 4.9 9.5 20.1	Ca^{2+} 177 ± 49 161 ± 10 170 ± 1 139 ± 1 154 ± 71 127 ± 58 94.6 ± 75	H^{+} $1 0.065 \pm \\ 6 0.074 \pm \\ 4 0.071 \pm \\ 3 0.13 \pm \\ 6 0.048 \pm \\ 9 0.084 \pm \\ 4 0.12 \pm \\ \end{bmatrix}$	0.028 0.035 0.036 0.061 0.011 0.035 0.065	$\begin{array}{r} \mbox{Total cations} \\ \mbox{(TC)} \\ 234 \pm 61.5 \\ 212 \pm 125 \\ 220 \pm 126 \\ 187 \pm 155 \\ 206 \pm 74.0 \\ 170 \pm 72.9 \\ 139 \pm 96.8 \end{array}$	ΔC 194 ± 180 ± 188 ± 152 ± 165 ± 131 ± 114 ±	54.5 120 124 144 71.4 72.7 97.1
Site St 2 St 4 St 6 St 8-2	Sampling date 12 Aug. 2004 2 Sep. 2004 12 Aug. 2004 2 Sep. 2004 15 Aug. 2004 5 Sep. 2004 15 Aug. 2004 5 Sep. 2004	n 7 7 7 7 7 7 7 7 7 7	Na^+ 28 ± 7.3 21 ± 5.7 24.0 ± 11.7 20.0 ± 10.8 22 ± 7.7 20 ± 5.1 16 ± 4.9 15 ± 2.2	NH_4^+ 4.3 ± 0.7 4.3 ± 1.6 3.6 ± 3.8 3.3 ± 1.9 2.1 ± 1.8 4.8 ± 1.7 3.8 ± 1.1 4.1 ± 1.5	K^{+} 1.7 ± 2.4 ± 1.8 ± 2.1 ± 2.1 ± 1.8 ± 1.6 ± 1.2 ±	0.72 1.9 1.4 3.2 0.88 1.1 1.0 0.86	Mg^{2+} 23.4 ± 23.3 ± 20.2 ± 21.9 ± 25.2 ± 15.7 ± 23.6 ± 13.0 ±	9.7 14.2 15.6 32.5 4.9 9.5 20.1 9.4	Ca^{2+} 177 ± 49 161 ± 10 170 ± 11 139 ± 1 154 ± 71 127 ± 58 94.6 ± 75 92.5 ± 20	H^{+} $1 0.065 \pm 6 0.074 \pm 4 0.071 \pm 3 0.13 \pm 6 0.048 \pm 9 0.084 \pm 4 0.12 \pm 3 0.094 \pm 1000$	0.028 0.035 0.036 0.061 0.011 0.035 0.065 0.016	$\begin{array}{c} \text{Total cations} \\ (\text{TC}) \\ \hline 234 \pm 61.5 \\ 212 \pm 125 \\ 220 \pm 126 \\ 187 \pm 155 \\ 206 \pm 74.0 \\ 170 \pm 72.9 \\ 139 \pm 96.8 \\ 126 \pm 28.9 \\ \end{array}$	ΔC 194 ± 180 ± 188 ± 152 ± 165 ± 131 ± 114 ± 95.0 ±	54.5 120 124 144 71.4 72.7 97.1 26.6
Site St 2 St 4 St 6 St 8-2 St 10	Sampling date 12 Aug. 2004 2 Sep. 2004 12 Aug. 2004 2 Sep. 2004 15 Aug. 2004 15 Aug. 2004 15 Aug. 2004 15 Aug. 2004 17 Aug. 2004	n 7 7 7 7 7 7 7 7 7 7 7	Na^{+} 28 ± 7.3 21 ± 5.7 24.0 ± 11.7 20.0 ± 10.8 22 ± 7.7 20 ± 5.1 16 ± 4.9 15 ± 2.2 20 ± 8.0	$\begin{array}{c} \mathrm{NH_4^+} \\ 4.3 \ \pm \ 0.7 \\ 4.3 \ \pm \ 1.6 \\ 3.6 \ \pm \ 3.8 \\ 4.8 \ \pm \ 1.7 \\ 3.8 \ \pm \ 1.7 \\ 3.8 \ \pm \ 1.1 \\ 4.1 \ \pm \ 1.5 \\ 2.9 \ \pm \ 2.3 \end{array}$	K^{+} 1.7 ± 2.4 ± 1.8 ± 2.1 ± 1.8 ± 1.6 ± 1.2 ± 2.4 ±	0.72 1.9 1.4 3.2 0.88 1.1 1.0 0.86 0.63	Mg^{2+} 23.4 ± 23.3 ± 20.2 ± 21.9 ± 25.2 ± 15.7 ± 23.6 ± 13.0 ± 45.1 ±	9.7 14.2 15.6 32.5 4.9 9.5 20.1 9.4 22.2	Ca^{2+} 177 ± 49 161 ± 10 170 ± 1 139 ± 1 154 ± 71 127 ± 58 94.6 ± 75 92.5 ± 20 175 ± 93	H^{+} $1 0.065 \pm 6 0.074 \pm 4 0.071 \pm 3 0.13 \pm 6 0.048 \pm 9 0.084 \pm 4 0.12 \pm 3 0.094 \pm 3 0.066 \pm 10^{-10}$	0.028 0.035 0.036 0.061 0.011 0.035 0.065 0.016 0.024	$\begin{array}{c} \mbox{Total cations} \\ \mbox{(TC)} \\ \hline 234 \pm 61.5 \\ 212 \pm 125 \\ 220 \pm 126 \\ 187 \pm 155 \\ 206 \pm 74.0 \\ 170 \pm 72.9 \\ 139 \pm 96.8 \\ 126 \pm 28.9 \\ 246 \pm 117 \\ \end{array}$	ΔC 194 ± 180 ± 188 ± 152 ± 165 ± 131 ± 114 ± 95.0 ± 220 ±	54.5 120 124 144 71.4 72.7 97.1 26.6 111
Site St 2 St 4 St 6 St 8-2 St 10	Sampling date 12 Aug. 2004 2 Sep. 2004 12 Aug. 2004 2 Sep. 2004 15 Aug. 2004 5 Sep. 2004 15 Aug. 2004 5 Sep. 2004 17 Aug. 2004 7 Sep. 2004	n 7 7 7 7 7 7 7 7 7 7 7	$\begin{array}{r} Na^+ \\ \hline 28 \ \pm \ 7.3 \\ 21 \ \pm \ 5.7 \\ 24.0 \ \pm \ 11.7 \\ 20.0 \ \pm \ 10.8 \\ 22 \ \pm \ 7.7 \\ 20 \ \pm \ 5.1 \\ 16 \ \pm \ 4.9 \\ 15 \ \pm \ 2.2 \\ 20 \ \pm \ 8.2 \\ 30 \ \pm \ 4.8 \end{array}$	$\begin{array}{c} \mathrm{NH_4}^+ \\ 4.3 \ \pm \ 0.7 \\ 4.3 \ \pm \ 1.6 \\ 3.6 \ \pm \ 3.8 \\ 3.3 \ \pm \ 1.9 \\ 2.1 \ \pm \ 1.8 \\ 4.8 \ \pm \ 1.7 \\ 3.8 \ \pm \ 1.1 \\ 4.1 \ \pm \ 1.5 \\ 2.9 \ \pm \ 2.3 \\ 11.9 \ \pm \ 14.3 \end{array}$	K^{+} 1.7 ± 2.4 ± 1.8 ± 2.1 ± 1.8 ± 1.6 ± 1.2 ± 2.4 ± 2.4 ± 2.4 ±	0.72 1.9 1.4 3.2 0.88 1.1 1.0 0.86 0.63 1.3	Mg^{2+} 23.4 ± 23.3 ± 20.2 ± 21.9 ± 25.2 ± 15.7 ± 23.6 ± 13.0 ± 45.1 ± 11.5 ±	9.7 14.2 15.6 32.5 4.9 9.5 20.1 9.4 22.2 2.77	$\begin{array}{c} Ca^{2+} \\ \hline 177 \pm 49 \\ 161 \pm 11 \\ 170 \pm 1 \\ 139 \pm 1 \\ 154 \pm 71 \\ 127 \pm 58 \\ 94.6 \pm 75 \\ 92.5 \pm 20 \\ 175 \pm 93 \\ 157 \pm 24 \end{array}$	H^{+} $1 0.065 \pm \\ 6 0.074 \pm \\ 4 0.071 \pm \\ 3 0.13 \pm \\ 6 0.048 \pm \\ 9 0.084 \pm \\ 4 0.12 \pm \\ 3 0.094 \pm \\ 3 0.096 \pm \\ 7 0.095 \pm \\ \end{bmatrix}$	0.028 0.035 0.036 0.061 0.011 0.035 0.065 0.016 0.024 0.033	$\begin{array}{c} \hline \text{Total cations} \\ (\text{TC}) \\ \hline 234 \pm 61.5 \\ 212 \pm 125 \\ 220 \pm 126 \\ 187 \pm 155 \\ 266 \pm 74.0 \\ 170 \pm 72.9 \\ 139 \pm 96.8 \\ 126 \pm 28.9 \\ 246 \pm 117 \\ 213 \pm 24.1 \\ \end{array}$	ΔC 194 ± 180 ± 188 ± 152 ± 165 ± 131 ± 114 ± 95.0 ± 220 ± 119 ±	54.5 120 124 144 71.4 72.7 97.1 26.6 111 18.7
Site St 2 St 4 St 6 St 8-2 St 10 St 14	Sampling date 12 Aug. 2004 2 Sep. 2004 12 Aug. 2004 12 Aug. 2004 15 Aug. 2004 15 Aug. 2004 15 Aug. 2004 17 Aug. 2004 7 Sep. 2004 17 Aug. 2004	n 7 7 7 7 7 7 7 7 7 7 7 7 7	$\begin{array}{r} Na^+ \\ \hline 28 \pm 7.3 \\ 21 \pm 5.7 \\ 24.0 \pm 11.7 \\ 20.0 \pm 10.8 \\ 22 \pm 7.7 \\ 20 \pm 5.1 \\ 16 \pm 4.9 \\ 15 \pm 2.2 \\ 20 \pm 8.0 \\ 30 \pm 4.8 \\ 13 \pm 1.3 \end{array}$	$\begin{array}{c} \mathrm{NH_4}^+ \\ 4.3 \ \pm \ 0.7 \\ 4.3 \ \pm \ 1.6 \\ 3.6 \ \pm \ 3.8 \\ 3.3 \ \pm \ 1.9 \\ 2.1 \ \pm \ 1.8 \\ 4.8 \ \pm \ 1.7 \\ 3.8 \ \pm \ 1.1 \\ 4.1 \ \pm \ 1.5 \\ 2.9 \ \pm \ 2.3 \\ 11.9 \ \pm \ 14.3 \\ 9.4 \ \pm \ 1.1 \end{array}$	$\begin{array}{c} & K^{+} \\ 1.7 \ \pm \\ 2.4 \ \pm \\ 1.8 \ \pm \\ 2.1 \ \pm \\ 1.6 \ \pm \\ 1.2 \ \pm \\ 2.4 \ \pm \\ 2.4 \ \pm \\ 0.63 \ \pm \end{array}$	0.72 1.9 1.4 3.2 0.88 1.1 1.0 0.86 0.63 1.3 0.06	$\begin{array}{r} Mg^{2+} \\ \hline 23.4 \pm \\ 23.3 \pm \\ 20.2 \pm \\ 21.9 \pm \\ 25.2 \pm \\ 15.7 \pm \\ 23.6 \pm \\ 13.0 \pm \\ 45.1 \pm \\ 11.5 \pm \\ 7.8 \pm \end{array}$	9.7 14.2 15.6 32.5 4.9 9.5 20.1 9.4 22.2 2.77 0.25	$\begin{array}{c} Ca^{2+} \\ \hline 177 \pm 49 \\ 161 \pm 10 \\ 170 \pm 1 \\ 139 \pm 1 \\ 154 \pm 71 \\ 127 \pm 58 \\ 94.6 \pm 75 \\ 92.5 \pm 20 \\ 175 \pm 93 \\ 157 \pm 24 \\ 94.9 \pm 9 \end{array}$	H^{+} $1 0.065 \pm \\ 6 0.074 \pm \\ 4 0.071 \pm \\ 3 0.13 \pm \\ 6 0.048 \pm \\ 9 0.084 \pm \\ 4 0.12 \pm \\ 3 0.094 \pm \\ 3 0.094 \pm \\ 3 0.066 \pm \\ 7 0.095 \pm \\ 2 0.11 \pm \\ 0 0.11 \pm \\$	0.028 0.035 0.036 0.061 0.011 0.035 0.065 0.016 0.024 0.033 0.016	$\begin{array}{c} \mbox{Total cations} \\ \mbox{(TC)} \\ \mbox{234 \pm 61.5} \\ \mbox{212 \pm 125} \\ \mbox{220 \pm 126} \\ \mbox{220 \pm 126} \\ \mbox{206 \pm 74.0} \\ \mbox{170 \pm 72.9} \\ \mbox{139 \pm 96.8} \\ \mbox{126 \pm 28.9} \\ \mbox{246 \pm 117} \\ \mbox{213 \pm 24.1} \\ \mbox{213 \pm 24.1} \\ \mbox{126 \pm 10.6} \\ \mbox{26 \pm 10.6} \\ \end{array}$	ΔC 194 ± 180 ± 188 ± 152 ± 165 ± 131 ± 95.0 ± 220 ± 119 ± 87.9 ±	54.5 120 124 144 71.4 72.7 97.1 26.6 111 18.7 7.5
Site St 2 St 4 St 6 St 8-2 St 10 St 14	Sampling date 12 Aug. 2004 2 Sep. 2004 12 Aug. 2004 12 Aug. 2004 15 Aug. 2004 15 Aug. 2004 15 Aug. 2004 17 Aug. 2004 7 Sep. 2004 17 Aug. 2004 7 Sep. 2004	n 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$\begin{array}{r} Na^+ \\ \hline 28 \pm 7.3 \\ 21 \pm 5.7 \\ 24.0 \pm 11.7 \\ 20.0 \pm 10.8 \\ 22 \pm 7.7 \\ 20 \pm 5.1 \\ 16 \pm 4.9 \\ 15 \pm 2.2 \\ 20 \pm 8.0 \\ 30 \pm 4.8 \\ 13 \pm 1.3 \\ 23 \pm 4.9 \end{array}$	$\begin{array}{c} \mathrm{NH_4}^+ \\ 4.3 \ \pm \ 0.7 \\ 4.3 \ \pm \ 1.6 \\ 3.6 \ \pm \ 3.8 \\ 3.3 \ \pm \ 1.9 \\ 2.1 \ \pm \ 1.8 \\ 4.8 \ \pm \ 1.7 \\ 3.8 \ \pm \ 1.1 \\ 4.1 \ \pm \ 1.5 \\ 2.9 \ \pm \ 2.3 \\ 11.9 \ \pm \ 14.3 \\ 9.4 \ \pm \ 1.1 \\ 10.0 \ \pm \ 8.7 \end{array}$	$\begin{array}{c} & {\rm K}^{+} \\ \hline 1.7 & \pm \\ 2.4 & \pm \\ 1.8 & \pm \\ 2.1 & \pm \\ 1.8 & \pm \\ 1.6 & \pm \\ 1.2 & \pm \\ 2.4 & \pm \\ 2.4 & \pm \\ 0.63 & \pm \\ 1.4 & \pm \\ \end{array}$	0.72 1.9 1.4 3.2 0.88 1.1 1.0 0.86 0.63 1.3 0.06 0.41	Mg^{2+} $23.4 \pm$ $23.3 \pm$ $20.2 \pm$ $21.9 \pm$ $25.2 \pm$ $15.7 \pm$ $23.6 \pm$ $13.0 \pm$ $45.1 \pm$ $11.5 \pm$ $7.8 \pm$ $13.2 \pm$	9.7 14.2 15.6 32.5 4.9 9.5 20.1 9.4 22.2 2.77 0.25 4.3	Ca^{2+} 177 ± 49 161 ± 10 170 ± 1 139 ± 1 154 ± 71 127 ± 58 94.6 ± 75 92.5 ± 20 175 ± 93 157 ± 24 94.9 ± 9 154 ± 30	H^{+} $1 0.065 \pm 6 0.074 \pm 4 0.071 \pm 3 0.13 \pm 6 0.048 \pm 9 0.084 \pm 4 0.12 \pm 3 0.094 \pm 3 0.066 \pm 3 0.066 \pm 2 0.11 \pm 3 0.070 \pm 2 0.11 \pm 3 0.070 \pm $	0.028 0.035 0.036 0.061 0.011 0.035 0.065 0.016 0.024 0.033 0.016 0.014	$\begin{array}{c} \mbox{TC} \\ \mbox{(TC)} \\ \mbox{234} \pm 61.5 \\ \mbox{212} \pm 125 \\ \mbox{220} \pm 126 \\ \mbox{187} \pm 155 \\ \mbox{206} \pm 74.0 \\ \mbox{170} \pm 72.9 \\ \mbox{139} \pm 96.8 \\ \mbox{126} \pm 28.9 \\ \mbox{246} \pm 117 \\ \mbox{213} \pm 24.1 \\ \mbox{213} \pm 24.1 \\ \mbox{213} \pm 24.1 \\ \mbox{226} \pm 10.6 \\ \mbox{201} \pm 38.3 \end{array}$	ΔC 194 ± 180 ± 188 ± 152 ± 165 ± 131 ± 114 ± 95.0 ± 220 ± 119 ± 87.9 ± 136 ±	54.5 120 124 144 71.4 72.7 97.1 26.6 111 18.7 7.5 24.4
Site St 2 St 4 St 6 St 8-2 St 10 St 14 Mean ^{a)} ±SE	Sampling date 12 Aug. 2004 2 Sep. 2004 12 Aug. 2004 12 Aug. 2004 2 Sep. 2004 15 Aug. 2004 15 Aug. 2004 15 Aug. 2004 17 Aug. 2004 17 Aug. 2004 17 Aug. 2004 17 Sep. 2004	n 7 7 7 7 7 7 7 7 7 7 7 7 7 7 84	$\begin{array}{rrrr} Na^+ \\ \hline 28 \ \pm \ 7.3 \\ 21 \ \pm \ 5.7 \\ 24.0 \ \pm \ 10.7 \\ 20.0 \ \pm \ 10.8 \\ 22 \ \pm \ 7.7 \\ 20 \ \pm \ 5.1 \\ 16 \ \pm \ 4.9 \\ 15 \ \pm \ 2.2 \\ 20 \ \pm \ 8.0 \\ 30 \ \pm \ 4.8 \\ 13 \ \pm \ 1.3 \\ 23 \ \pm \ 4.9 \\ 21.0 \ \pm \ 8.0 \end{array}$	$\begin{array}{c} \mathrm{NH_4^+} \\ 4.3 \ \pm \ 0.7 \\ 4.3 \ \pm \ 1.6 \\ 3.6 \ \pm \ 3.8 \\ 3.3 \ \pm \ 1.9 \\ 2.1 \ \pm \ 1.8 \\ 4.8 \ \pm \ 1.7 \\ 3.8 \ \pm \ 1.1 \\ 4.1 \ \pm \ 1.5 \\ 2.9 \ \pm \ 2.3 \\ 11.9 \ \pm \ 1.4 \\ 3.9.4 \ \pm \ 1.1 \\ 10.0 \ \pm \ 8.7 \\ 5.4 \ \pm \ 5.7 \end{array}$	$\begin{array}{c} {\rm K}^{+}\\ 1.7 \ \pm\\ 2.4 \ \pm\\ 1.8 \ \pm\\ 2.1 \ \pm\\ 2.1 \ \pm\\ 1.8 \ \pm\\ 1.2 \ \pm\\ 2.4 \ \pm\\ 2.4 \ \pm\\ 2.4 \ \pm\\ 1.4 \ \pm\\ 1.8 \ \pm\\ 1.8 \ \pm\\ \end{array}$	0.72 1.9 1.4 3.2 0.88 1.1 1.0 0.86 0.63 1.3 0.06 0.41 1.4	Mg^{2+} 23.4 ± 23.3 ± 20.2 ± 21.9 ± 25.2 ± 15.7 ± 23.6 ± 13.0 ± 11.5 ± 7.8 ± 13.2 ± 20.3 ±	9.7 14.2 15.6 32.5 4.9 9.5 20.1 9.4 22.2 2.77 0.25 4.3 16.8	Ca^{2+} 177 ± 49 161 ± 11 170 ± 11 139 ± 1 154 ± 71 127 ± 58 94.6 ± 75 92.5 ± 20 175 ± 93 157 ± 24 94.9 ± 9 94.9 ± 9 154 ± 30 141 ± 74	$\begin{array}{c} H^{+} \\ 1 & 0.065 \pm \\ 6 & 0.074 \pm \\ 4 & 0.071 \pm \\ 3 & 0.13 \pm \\ 6 & 0.048 \pm \\ 9 & 0.084 \pm \\ 3 & 0.066 \pm \\ 3 & 0.066 \pm \\ 2 & 0.11 \pm \\ 3 & 0.070 \pm \\ 8 & 0.085 \pm \\ \end{array}$	0.028 0.035 0.036 0.061 0.011 0.035 0.065 0.016 0.024 0.033 0.016 0.014 0.040	$\begin{array}{c} \hline \mbox{Total cations} \\ (TC) \\ \hline 234 \pm 61.5 \\ 212 \pm 125 \\ 220 \pm 126 \\ 187 \pm 155 \\ 206 \pm 74.0 \\ 170 \pm 72.9 \\ 139 \pm 96.8 \\ 126 \pm 28.9 \\ 246 \pm 117 \\ 213 \pm 24.1 \\ 126 \pm 10.6 \\ 201 \pm 38.3 \\ 190 \pm 92.1 \\ \end{array}$	ΔC 194 ± 180 ± 188 ± 152 ± 165 ± 131 ± 114 ± 220 ± 119 ± 87.9 ± 136 ± 149 ±	54.5 120 124 144 71.4 72.7 97.1 26.6 111 18.7 7.5 24.4 89.0
Site St 2 St 4 St 6 St 8-2 St 10 St 14 Mean ^{a)} ±SE Max.	Sampling date 12 Aug. 2004 2 Sep. 2004 12 Aug. 2004 2 Sep. 2004 15 Aug. 2004 5 Sep. 2004 15 Aug. 2004 5 Sep. 2004 17 Aug. 2004 7 Sep. 2004 17 Aug. 2004 7 Sep. 2004 0	n 7 7 7 7 7 7 7 7 7 7 7 7 84	$\begin{array}{c} Na^+ \\ \hline 28 \ \pm \ 7.3 \\ 21 \ \pm \ 5.7 \\ 24.0 \ \pm \ 11.7 \\ 20.0 \ \pm \ 10.8 \\ 22 \ \pm \ 7.7 \\ 20 \ \pm \ 5.1 \\ 16 \ \pm \ 4.9 \\ 15 \ \pm \ 4.9 \\ 20 \ \pm \ 8.0 \\ 30 \ \pm \ 4.8 \\ 13 \ \pm \ 1.3 \\ 23 \ \pm \ 4.9 \\ 21.0 \ \pm \ 8.0 \\ 45.9 \end{array}$	$\begin{array}{c} \mathrm{NH_4^+} \\ 4.3 \ \pm \ 0.7 \\ 4.3 \ \pm \ 1.6 \\ 3.6 \ \pm \ 3.8 \\ 3.3 \ \pm \ 1.9 \\ 2.1 \ \pm \ 1.8 \\ 4.8 \ \pm \ 1.7 \\ 3.8 \ \pm \ 1.1 \\ 4.1 \ \pm \ 1.5 \\ 2.9 \ \pm \ 2.3 \\ 11.9 \ \pm \ 14.3 \\ 9.4 \ \pm \ 1.1 \\ 10.0 \ \pm \ 8.7 \\ 5.4 \ \pm \ 5.7 \\ 40.7 \end{array}$	$\begin{array}{c} {\rm K}^{+}\\ \hline 1.7 \ \pm \\ 2.4 \ \pm \\ 1.8 \ \pm \\ 2.1 \ \pm \\ 2.1 \ \pm \\ 1.8 \ \pm \\ 1.6 \ \pm \\ 1.2 \ \pm \\ 2.4 \ \pm \\ 2.4 \ \pm \\ 2.4 \ \pm \\ 2.4 \ \pm \\ 1.4 \ \pm \\ 1.8 \ \pm \\ 9.2 \end{array}$	$\begin{array}{c} 0.72 \\ 1.9 \\ 1.4 \\ 3.2 \\ 0.88 \\ 1.1 \\ 1.0 \\ 0.86 \\ 0.63 \\ 1.3 \\ 0.06 \\ 0.41 \\ 1.4 \end{array}$	Mg^{2+} 23.4 ± 23.3 ± 20.2 ± 21.9 ± 25.2 ± 15.7 ± 23.6 ± 13.0 ± 45.1 ± 11.5 ± 13.2 ± 20.3 ± 95.3	9.7 14.2 15.6 32.5 4.9 9.5 20.1 9.4 22.2 2.77 0.25 4.3 16.8	$\begin{array}{c} Ca^{2+} \\ \hline 177 \pm 49 \\ 161 \pm 11 \\ 170 \pm 1 \\ 139 \pm 1 \\ 154 \pm 71 \\ 127 \pm 58 \\ 94.6 \pm 75 \\ 92.5 \pm 20 \\ 59.5 \pm 20 \\ 175 \pm 93 \\ 157 \pm 24 \\ 94.9 \pm 9 \\ 154 \pm 30 \\ 154 \pm 36 \end{array}$	$\begin{array}{c} H^{+} \\ 1 & 0.065 \pm \\ 6 & 0.074 \pm \\ 4 & 0.071 \pm \\ 3 & 0.13 \pm \\ 6 & 0.048 \pm \\ 9 & 0.084 \pm \\ 4 & 0.12 \pm \\ 3 & 0.094 \pm \\ 3 & 0.096 \pm \\ 2 & 0.11 \pm \\ 3 & 0.070 \pm \\ 8 & 0.085 \pm \\ 0.20 \end{array}$	0.028 0.035 0.036 0.061 0.011 0.035 0.065 0.016 0.024 0.033 0.016 0.014 0.040	$\begin{array}{c} \hline \ \ \ \ \ \ \ \ \ \ \ \ \$	ΔC $194 \pm 180 \pm 188 \pm 152 \pm 165 \pm 131 \pm 114 \pm 95.0 \pm 220 \pm 119 \pm 87.9 \pm 136 \pm 149 \pm 457$	54.5 120 124 144 71.4 72.7 97.1 26.6 111 18.7 7.5 24.4 89.0

Unit: μ eq. L⁻¹ exept EC in mS m⁻¹.

a) Arithmetric mean.

b) Calculated from mean concentration of $\mathrm{H}^{\scriptscriptstyle +}.$

$$TC = [Na^{+}] + [NH_{4}^{+}] + [K^{+}] + [Mg^{2+}] + [Ca^{2+}] + [H^{+}]$$
(1)

$$TA = [F^{-}] + [Cl^{-}] + [NO_{3}^{-}] + [SO_{4}^{2^{-}}]$$
(2)

また TC と TA の差 (ΔC) を次のように定義した.

$$\Delta C = TC - TA$$

= ([Na⁺]+[NH4⁺]+[K⁺]+[Mg²⁺]+[Ca²⁺]
+[H⁺])-([F⁻]+[Cl⁻]+[NO3⁻]+[SO4²⁻])
(3)

単位はいずれも μeq. L⁻¹である. ΔC は, イオ ンバランスから計算された陽イオンの過剰分と考 えられる.

図2に、七一氷河の氷河表面におけるイオン成 分の平均濃度を陽イオンと陰イオンと分けて示 す.総陽イオン濃度が、総陰イオン濃度に比較し て大きく過剰であり、その陽イオンの中でも特に

図 2 七一氷河表面の雪および氷における陽イオン と陰イオンの平均濃度.

	Glacier 1, Glacier 2 and Dry Cirque	Glacier 1		East Rongbuk Glacier,	Khumbu-Himal	Qiyi Glacier	
Area and	East Tian	East Tian S	Shan, China	Northern	Southern slope	Qilian Mountains,	
Country	Shan, China			slope of Mt.	of Mt. Everest,	Ch	ina
Elevation/m a s l	3775-4300	4030	4130	Everest, China	Nepal 5050-6050	1336	-4860
Sampling period	May 1990	May-Jun	2002_2005	Aug -Sep	Sen -Oct 1998	Δug -Se	-7000
Sampling period	Way 1990	1996	2002-2003	1998	SepOet. 1778	Aug50	.p. 2004
Sample state	New snow	Fresh	Surface	Fresh snow	Fresh snow	Surface	Surface
	(fallen snow)	snow and	snow			snow	ice
		surface					
n	7	-	-	39	20	35	49
pH	6.36	-	5.5	-	5.68-6.47*	7.05	7.09
EC	0.47	-	0.291	-	0.121-0.207*	1.79	1.82
Cl ⁻	5.1	12.3	7.3	1.02	0.33-6.7	21.5	20.4
NO ₃ -	4.3	2.3	5.8	1.14	0.31-7.6	13.6	4.3
SO4 ²⁻	13.2	9.8	11.4	0.72	0.22-40.3	17.4	8.0
ΔC	15.6	196.8	-	-0.03	-	114	173
Na^+	5.2	12.4	3.2	0.41	0.32-6.1	20.0	21.6
$\mathrm{NH_4}^+$	-	4.4	9.7	0.34	<d.l.**-9.7< td=""><td>8.0</td><td>3.5</td></d.l.**-9.7<>	8.0	3.5
\mathbf{K}^+	1.9	3.4	1.1	0.15	0.11-6.1	1.5	2.0
Mg^{2+}	2.8	53.4	11.0	0.23	0.05-1.8	12.2	26.1
Ca^{2+}	21.6	147.5	74.3	1.71	0.29-23.4	125	153
References***	1)	2)	3)	4)	5)	Presen	it study

表3 七一氷河およびチベット高原周辺とヒマラヤ山脈における氷河の雪の化学成分の平均濃度または濃度範囲. 七一氷河については、氷試料の結果も示した.

Unit: μ eq. L⁻¹ exept EC in mS m⁻¹.

**n*=16.

** D.L.: detection limit.

***1) Williams et al. (1992); 2) Sun et al. (1998); 3) Li et al. (2010); 4) Kang et al. (2004); 5) Marinoni et al. (2001).

Ca²⁺が濃度の半分以上を占めている.

氷河表面の雪および氷では、氷河の各地点で大 きな差は見られず、化学成分濃度は概ね一様で あった.ただし化学成分のうち NO_3^- , SO_4^{2-} に ついては、他の採取地点および8月採取の試料に 比較して、9月のSt10とSt14では濃度が高かっ た.またF⁻は、他の採取地点、採取月に比較し て、上記の2地点に加え、St6とSt8-2の9月で 濃度が高かった. NO_3^- , SO_4^{2-} およびF⁻の濃度 分布の違いの原因ははっきりしないが、9月に高 濃度が見られたのは全て雪または新雪のみで、氷 では無いことから、氷河表面状態の違いを反映し ている可能性もある.

次に七一氷河表面の化学組成の地域的な特徴を 見るため、チベット高原周辺とヒマラヤ山脈の氷 河の雪の化学組成を比較,考察した.結果を表3 に示す.比較条件を揃えるため,七一氷河以外の 氷河の化学組成は新雪または降雪,七一氷河の氷 河表面の結果は雪と氷に分けて示し,雪の結果に ついて比較した.比較した雪は,次のように採取 された.東天山では,降り始めからの新雪をバル クコンテナに採取した(Williams et al, 1992).同 じく東天山の No.1氷河では,平衡線高度上の氷 河中央部付近の氷河上において,エアロゾル採取 中に表面雪を採取し(Sun et al., 1998),また涵養 域で毎週新雪を採取し(Sun et al., 1998),また涵養 域で毎週新雪を採取し(Sun et al., 1998),また涵養 すで毎週新雪を採取し(Sun et al., 1998),また涵養 すで毎週新雪を採取し(Sun et al., 1998),また涵養

 図 3 七一氷河表面の雪および氷における a) 電気伝 導度(EC)とb) pHの頻度分布.

(Marinoni et al., 2001).

七一氷河の氷河表面の雪の pH の平均値は 7.05 と、ほぼ中性だった.これらは、チベット高原周 辺およびヒマラヤ山脈の氷河の雪の pH, EC と比 較して、pH はやや高く、EC は数倍~十数倍高 かった.図3に、七一氷河表面の雪と氷のECと pHの頻度分布を示す. pH は平均値を中心とし て、比較的きれいな正規分布を示したのに対し、 EC では正規分布はやや不明瞭だった.また図4 に、七一氷河表面の雪と氷の pH と EC の関係を 示す (n=84). 一部を除き, pH が上昇するのに 比例して, ECも上昇する傾向が見える.このこ とは、EC が高い、すなわち全イオン成分濃度が 高い時には、塩基性を示すイオン成分濃度が高い 傾向にあることを意味する.実際,図4中でpH, EC ともに最も高い試料は、Ca²⁺、Mg²⁺、K⁺濃 度も最も高く, pH, EC とも最も低い試料は Ca²⁺ 濃度が最も低かった.pHとECの関係について は, Kang et al. (2002) がヒマラヤ山脈の新雪につ いて、pH4.34~7.13の範囲で、ECはpH6付近を 頂点とする下に凸の関係を示した. またヒマラヤ 山脈の Dasuopu 氷河の降雪に対しても Kang et al. (2002) と同様の関係が、さらにチベットの Dongkemadi 氷河の降雪においては、pH6~7の

図 4 七一氷河表面の雪および氷における pH と EC の関係.

範囲で、pH の増加とともに EC が増加する関係 が報告されている(Xiao *et al.*, 2002).本研究の七 一氷河においても、基本的には pH と EC との関 係は、Kang *et al.* (2002) および Xiao *et al.* (2002) と同様に、高 pH のとき高 EC、低 pH のとき低 EC という関係が見られた.一方、図 4 では上記 の関係とは異なる低 pH かつ高 EC の 4 試料が見 られた.このうち 3 点は 2004 年 9 月に St 10 で 採取された試料で、H⁺を供給する SO₄²⁻および NO₃⁻の合計濃度が高く、全試料中の上位 4 位に 含まれた.これが、上記の 4 試料で低 pH かつ高 EC という、他の試料と異なる関係が見られた一 因と推察された.

表3からは、七一氷河表面の雪と化学成分濃度 やその分布の傾向は、ヒマラヤ山脈に比べ天山山 脈のNo.1氷河に類似していることがわかる.イ オン成分濃度やECは、七一氷河および天山山脈 がヒマラヤ山脈より高い傾向にあった.Wake et al.(1993)は、チベット高原周辺氷河の積雪試料 の化学成分濃度は、特に北部の天山山脈や祁連山 脈、西部の崑崙山脈の氷河では、ヒマラヤ山脈や カラコルム山脈、チベット高原南部より1桁程度 高いと報告している。チベット高原北部および西 部の氷河では、本研究の七一氷河や前述したNo.1 氷河同様、Ca²⁺が最も濃度が高く、次に濃度が高

図 5 七一氷河表面の雪および氷における Mg²⁺濃度と Ca²⁺濃度の和と △C の関係. 実線は回帰 直線.

いグループが Na⁺, Cl⁻, SO₄²⁻となる傾向も同 じであった. Xiao et al. (2002) は、チベット高原 周辺の氷河のうち、祁連山脈を含むチベット高原 北縁部が、イオン成分濃度が最も高くなる傾向に あると報告している. また永塚ら (2011) は、七 一氷河を含むアジアの氷河表面のクリオコナイト に含まれるストロンチウム (Sr) とネオジム (Nd) の同位体比を分析している. その結果, 七一氷河 のケイ酸塩鉱物は、氷河周辺のレスや砂漠の砂お よび河川堆積物に,一方,塩類鉱物と炭酸塩鉱物, リン酸塩鉱物は、氷河周辺の地殻だけでなく周辺 の砂漠の蒸発岩やリン灰石に由来すると結論し、 特に氷河周辺からのダストの影響が強いとしてい る. さらに Zhang et al. (1996) は、標高 4800 m のチベット高原北部で採取したエアロゾルの金属 元素分析から、ダストの起源としてローカルなも のが70% 偏西風による長距離輸送による寄与が 25%と報告している.本研究で明らかになった 氷河表面の雪の化学組成と過去の研究例から,主 に氷河周辺から輸送され沈着したダストが、七一 氷河表面の化学組成に大きく影響していると考え られる.

主な起源が Ca²⁺と同じ土壌とされるダスト は、本研究では測定されていない.しかし表3に 示すように、七一氷河の Ca²⁺濃度が高いことか ら、七一氷河を含む祁連山脈でのダストフラック スは、チベット高原とその周辺の氷河の中でも大 きいと推察される.

七一氷河表面の雪と氷における ΔC の平均値 は、149 µeg. L⁻¹ であった. また氷河表面の雪の ΔC でも、114 μ eg. L⁻¹ であり、いずれの値も他の どの陰イオンの平均濃度よりも高かった. また表 3に示した他の氷河における △C でも、天山山脈 の No.1 氷河で 196.8 µeq. L⁻¹ (Sun *et al.*, 1998) と 特に高かった. 七一氷河表面の雪と氷では、Ca²⁺ 濃度と Mg²⁺濃度の和である Ca²⁺+Mg²⁺と ΔC との間で、非常に高い相関 (r=0.98, n=84) が見 られた(図5).中国の黄土には多量のカルサイト (方解石:炭酸カルシウム)が含まれていること が知られている(鶴田, 1991;井上ら, 1994). Williams et al. (1992) および Kang et al. (2002) は、それぞれ天山山脈とヒマラヤ山脈の氷河の雪 において、本研究での △C に相当する総陽イオン 濃度と総陰イオン濃度の差分を、CO3²⁻および HCO3⁻由来としている. Xiao et al. (2002) は、氷 河表面の雪および氷の化学成分分析の結果から. チベット高原一帯の風送ダストは、CaCO3+Ca (HCO₃)2型の塩が支配的としている. CaCO₃は水 に溶解すると弱塩基性を示すため、これが氷河表 面にエアロゾルによる乾性沈着または降水による 湿性沈着により沈着後、溶解することで、氷河表 面の化学組成に大きな影響を与えていると考えら れる. また七一氷河では pH と $Ca^{2+} + Mg^{2+}$ の 間には、r=0.82 (n=84) とやはり高い相関が見ら れた(図6). これらのことから、七一氷河におけ る ΔC の主なイオン成分は HCO₃⁻であり、Ca²⁺ 濃度と Mg²⁺濃度とともに、pH に大きな影響を 与えていると考えられる.以上のように、氷河周 辺の乾燥・半乾燥地起源のダスト由来成分が、七 一氷河表面の化学組成に大きな影響を与えている ことが明らかになった.

図7に七一氷河表面の雪と氷のNa⁺とCl⁻の関 係を示す.両者の相関はr=0.93と高く,またNa⁺ /Cl⁻比の平均値±標準偏差は,1.00±0.13だった. Na⁺/Cl⁻比について,大気中のNa⁺とCl⁻の主 な起源とされる海塩は,当量濃度比で0.86(角皆・ 乗木,1983)とされ,七一氷河の値はやや大きい ことが分かった.Wake *et al.*(1993)は,中央ア

 図6 七一氷河表面の雪および氷における pH と Mg²⁺濃度とCa²⁺濃度の和の関係.

ジアの氷河上の雪の Na⁺/Cl⁻の値が,海塩起源 は 0.86, 岩塩 (halite) 起源は 1.0 としている. 岩 塩の主成分は NaCl で. そのモル比は約1:1とさ れる (Barthelmy, 2013). Yabuki et al. (2005) は, タクラマカン砂漠北縁部のアクスで、エアロゾル 中の Na⁺と Cl⁻がおおよそモル比で1:1の関係 にあり、これらの大部分が岩塩起源と報告してい る. また Okada and Kai (2004) でも, タクラマ カン砂漠の大気中鉱物粒子の分析から、NaClの 主要な起源は、海洋ではなく岩塩としている. Wake *et al.* (1990) は. 天山山脈の氷河での Na⁺ と Cl⁻の主要な起源は、この北部または西部の蒸 発残留岩、すなわち岩塩であるとしている、さら に永塚ら(2011)は、クリオコナイトの Sr 同位体 比解析から,七一氷河の塩類鉱物や炭酸塩鉱物は, 天山山脈やアルタイ山脈の氷河と同様に、主にア ジア内陸部の乾燥地帯でできた蒸発岩の塩類鉱物 や炭酸塩鉱物起源としている. これらのことか ら、七一氷河の Na⁺と Cl⁻の主要な起源は、岩塩 であり、海塩の寄与は岩塩と比較して小さいと考 えられる.

本研究では、他のイオン成分に比較して低濃度 であるが、F⁻が検出された、中国における大気 中F⁻の起源は、石炭燃焼(Feng*et al.*,2003)や、 他地域より高濃度のフッ素を含む土壌(井上ら、

図7 七一氷河表面の雪および氷における Na⁺濃度 と Cl⁻濃度の関係.破線は海塩比,点線は岩塩 (halite) 比を示す.

1995)とされる.また日本など他の地域に比較し て、中国ではエアロゾルや降水中のF⁻濃度が著 しく高いと報告されている(Feng *et al.*, 2003; Zhao *et al.*, 1994).本研究の氷河表面の雪および 氷のF⁻濃度は、中国での降水中濃度の報告例と 比較して、1桁程度低かった.しかし今後の経済 発展に伴う石炭の消費量増加に伴い、大気中F⁻ 濃度も高くなり、その結果沈着量も増加する可能 性もあり、今後も注視する必要がある.

3.2 降水と氷河表面の化学組成の比較

表4に,七一氷河近傍で採取した降水7試料の 化学成分濃度と採取期間,自動気象計で観測した 降水量を示す.なお化学成分の平均値は降水量加 重平均値である.降水の化学成分の平均値を氷河 表面の雪および氷のそれと比較すると,pHとEC はやや低く,NO₃⁻,SO₄²⁻,NH₄⁺,K⁺,H⁺は 降水の方が高かったが,残りのイオン成分は氷河 表面の雪と氷の方が高かった.

七一氷河の氷河表面の雪と氷,降水の化学成分の組成を比較した.図8に,降水,雪,氷の Δ C を含む総イオン濃度に対する各イオン成分の割合 を示す.総イオン濃度の平均値は,降水が最も低 く (195 μ eq. L⁻¹),次いで雪 (334 μ eq. L⁻¹),氷 (413 μ eq. L⁻¹)の順になった.イオン成分の割合

	Precipita							Total							Total	
Sampling date in 2004	-tion	pН	EC	F-	C1-	NO ₃ -	SO_4^{2-}	anions	Na+	$\mathrm{NH_4}^+$	K +	Mg^{2+}	Ca^{2+}	H^+	cations	ΔC
	amount ^{a)}							(TA)							(TC)	
16:20 10 Aug7:20 11 Aug.	11.2	6.31	0.39	ND	2.3	2.8	1.7	6.9	2.1	9.8	0.33	1.6	8.9	0.49	23.3	16.4
18:13 12 Aug7:00 13 Aug.	14.7	6.26	0.48	0.04	3.7	4.4	6.4	14.5	3.5	19.4	0.56	2.0	12.0	0.55	38.0	23.6
12:50-15:30 18 Aug.	3.1	6.86	4.81	2.5	67.7	91.9	151	311	43.4	90.3	8.6	22.2	284	0.14	448	137
21:00 18 Aug15:00 19 Aug.	5.6	6.97	2.71	0.77	20.7	26.7	58.8	106	16.8	81.4	17.5	19.3	110	0.11	245	139
9:00-13:50 22 Aug.	2.9	6.99	1.72	0.31	20.7	9.0	32.6	62.3	20.3	18.7	1.5	7.3	101	0.10	149	86.4
13:50-15:00 22 Aug.	5.7	6.63	0.51	0.05	6.3	1.5	3.4	11.1	6.2	7.4	0.88	3.3	15.6	0.23	33.6	22.4
17:00 23 Aug7:00 24 Aug.	0.2	7.02	2.13	0.36	25.3	32.5	33.4	91.2	22.8	54.8	2.4	8.3	111	0.10	199	108
Mean ^{b)}	6.2	6.43 ^{d)}	1.14	0.32	11.6	13.1	23.7	48.4	9.2	28.5	3.4	6.1	49.8	0.37	97.5	49.1
SD ^{c)}	4.7	e)	0.52	0.27	6.9	9.4	16.3	32.5	4.6	11.7	2.4	3.0	30.5	0.08	49.8	19.5
Max.	14.7	7.02	4.81	2.5	67.7	91.9	151	311	43.4	90.3	17.5	22.2	284	0.55	448	139
Min.	0.2	6.26	0.39	ND	2.3	1.5	1.7	6.9	2.1	7.4	0.33	1.6	8.9	0.10	23.3	16.4

表 4 七一氷河における降水の化学成分濃度.

Unit: ion species in µeq. L⁻¹, EC in mS m⁻¹ and precipitation amount in mm.

ND: Not detectable.

a) Measured by automatic weather station at terminus of Qiyi Glaicer.

b) Volume weighted (VW) mean except precipitation amount in arithmetric mean.

c) Volume weighted (VW) standard deviation except precipitation amount in standard deviation.

d) Calculated from mean concentration of H⁺.

e) VWMean+SD: 6.54, VWMean-SD:6.35, calculated from SD of H⁺ concentration.

では、降水、雪、氷とも Ca^{2+} , Mg^{2+} , ΔC が優先 し、降水に比べ雪および氷でその割合が顕著に大 きくなった. 一方 NH_4^+ , NO_3^- , SO_4^{2-} は、降水 に比較して雪および氷で顕著に小さく、 Ca^{2+} , Mg^{2+} , ΔC とは対照的な結果となった. また CI^- および Na^+ は、降水、雪、氷のいずれもおおむね 同じ割合であった. なお、本研究での氷試料は、 氷河表面の最上部約 1 cm のみを採取したため、 多くは新雪から変態したざらめ雪と再凍結氷およ び融解水であり、また降水として氷河上に沈着後 数年以上を経た氷河消耗域の氷も含まれていると 考えられる.

Williams and Melack (1991) および Williams *et* al. (1992) は,融解-再凍結過程を繰り返すことで, ダストの融解が進行し、ダストからの Ca²⁺,Mg²⁺, HCO₃⁻の溶解による濃度増加を報告している.同様に本研究でも、降水より雪、雪より氷と,融解-再凍結過程をより多く経験することで,Ca²⁺, Mg²⁺, HCO₃⁻濃度が高くなり、その結果降水、雪、氷それぞれの pH が上昇する一因となったと考えられる.さらに氷河表面では、湿性沈着後、ダストなどエアロゾルやガス体の乾性沈着の影響も考えられる.七一氷河周辺は乾燥・半乾燥地域であるため、ダスト沈着の影響がより顕著に現れたと考えられる.一方、NH4⁺, NO3⁻,SO4²⁻のうち、NH4⁺や NO3⁻では、氷河表面に沈着後ガス体の吸収などの影響による濃度上昇 (Sun et al., 1998) も報告されているが、本研究で は NO_3^- で降水($13.1\mu eq. L^{-1}$)より雪($13.6\mu eq. L^{-1}$)がやや高かったほかは、いずれも降水より も氷河表面、特に氷での濃度が低くなった、考え られる原因としては、 NO_3^- では光化学反応によ る分解(Dominé and Shepson, 2002)や氷河の表 面氷の昇華に伴う揮散(Ginot et al., 2001)のほか、 七一氷河表面での多量の微生物(Takeuchi et al., 2005)活動の影響も考えられる.いずれにしても、 七一氷河が含まれる温暖域の山岳氷河では、化学 成分は、降水による沈着後に物理学、化学、生物 学的な作用および乾性沈着の影響を受けるため、 過去の気候・環境変動の復元の際には、これらを 考慮する必要がある.

近年チベット高原の都市部で、降水酸性化の進 行が報告されている.これらの降水の pH は 7 前 後であり、化学成分の濃度レベルや構成も、七一 氷河の降水のそれと類似している.ラサや祁連山 脈にも比較的近い西寧とゴルムドでは、降水の加 重平均 pH が、1980 年代後半から 1990 年代後半 の約 10 年間で、1 程度低下している(Zhang et al., 2003a, b).また西寧とゴルムドの降水中加重平均 濃度も同様の約 10 年間で、 NO_3^- が 5.9 倍、 SO_4^{2-} が 10.6 倍、 NH_4^+ が 13.8 倍と急増している (Zhang et al., 2003a).これらの原因の一つとし て、石炭消費量の増加が挙げられている(Zhang et al., 2003a, b).この様な降水酸性化は、七一氷

図 8 七一氷河における a) 降水, b) 氷河表面の雪お よび c) 氷河表面の氷のイオン成分の割合.降 水は降水量加重平均濃度,氷河表面の雪および 氷は平均濃度による.それぞれの当量濃度は, ΔC を含むイオン成分の合計濃度を示す.

河でも進行する可能性が考えられる.本研究にお ける七一氷河の降水試料での最高濃度は、NO₃⁻ で 91.9 μ eq. L⁻¹, SO₄²⁻で 151 μ eq. L⁻¹, NH₄⁺で 90.3 μ eq. L⁻¹だった.これらの濃度は、いずれの イオン成分も 1998 年から 2000 年のラサの降水中 最高濃度より高く (Zhang *et al.*, 2003b), NO₃⁻と SO₄²⁻は、1999 年から 2000 年の西寧とゴルムド における降水中加重平均濃度より高かった (Zhang *et al.*, 2003a).このように人為活動起源と 考えられるイオン成分は、既に七一氷河の降水で も比較的高濃度が観測されている.中国は今後も 経済発展の進行が予想され、将来的に七一氷河を 含むチベット高原周辺の降水とさらには氷河表面 について、酸性化の進行も懸念される.

3.3 統計解析による化学成分の起源解析

七一氷河表面の雪と氷の化学成分のより詳細な 考察のため、統計解析を行った。表5に七一氷河 表面の雪および氷の EC, pH とイオン成分濃度の 相関係数を示す。表中に太字で示した<SO₄²⁻と F⁻, NO₃⁻>, <Na⁺と Cl⁻>, <Ca²⁺と EC>, <ΔC と pH, Mg²⁺, Ca²⁺>の間で, r>0.8以上 の高い相関が見られた。

次に主成分分析の結果を,表6に示す.ファク ターは3つ抽出され、各成分において因子負荷量 の絶対値が最大のものを太字で示した.ファク ター1で因子負荷量の絶対値が大きいものは, $\Delta C, Ca^{2+}, Mg^{2+}, K^+, EC, H^+ cb), chb$ は主に土壌やダスト起源であり、その結果 EC お よび pH が高くなったことを示すものと考えられ る.ファクター2では、 SO_4^{2-} やF⁻, NO_3^- が大 きく, 人為活動起源, 特に化石燃料燃焼起源を示 すと考えられる.これらは、後方流跡線解析(Li et al., 2011) やエアロゾルの金属成分分析 (Zhang et al., 1996)の結果が示すように、数百 km から 1000~3000 km 程度離れた,中国北西部や中央ア ジアの都市部や工業地域から輸送されたと考えら れる. 最後にファクター3では, Cl^- と Na⁺, NH4⁺が含まれた. このうち, Na⁺と Cl⁻は前述 したように、主に岩塩起源と考えられる、一方 NH4⁺の起源は、中国では主に農業活動とされて いる (Liu et al., 2013). 主成分分析で NH4⁺が, 起 源が異なると考えられる Na⁺や Cl⁻と同じファ クターになった理由ははっきりしないが.

表 5 七一氷河表面の雪および氷における各化学成分の相関係数.太字は r>0.8 であることを示す.

	EC	pН	F-	Cl-	NO ₃ -	SO4 ²⁻	Na^+	$\mathrm{NH_4}^+$	K^+	Mg ²⁺	Ca ²⁺	ΔC
EC	1											
pН	0.64**	1										
F.	0.36**	-0.01	1									
Cl.	0.56^{**}	0.29**	0.40^{**}	1								
NO_3	0.33**	-0.14	0.73**	0.46**	1							
$\mathrm{SO_4}^{2\text{-}}$	0.51**	0.04	0.80**	0.52**	0.89**	1						
Na^+	0.70^{**}	0.51**	0.27^{*}	0.93**	0.27^*	0.40**	1					
$\mathrm{NH_4}^+$	0.03	-0.14	0.33**	0.40^{**}	0.46**	0.41**	0.26^*	1				
K^+	0.71^{**}	0.71**	0.12	0.38**	0.01	0.14	0.60^{**}	0.03	1			
Mg^{2+}	0.57^{**}	0.69**	-0.15	0.09	-0.25*	-0.14	0.38**	-0.28*	0.77^{**}	1		
Ca^{2+}	0.83**	0.79**	0.15	0.36**	0.02	0.25^{*}	0.57^{**}	-0.10	0.74^{**}	0.66**	1	
ΔC	0.75**	0.83**	-0.04	0.26*	-0.19	0.02	0.52**	-0.17	0.79**	0.80**	0.96**	1

n=84.

**: *p*<0.01

*: p<0.05

表6 七一氷河表面の雪および氷における各化学成 分の主成分分析の結果.太字は各成分におい て因子負荷量の絶対値が最大のものを示す.

	Factor 1	Factor 2	Factor 3
ΔC	0.96	-0.08	0.01
Ca^{2+}	0.93	0.15	0.05
Mg^{2+}	0.86	-0.21	-0.10
\mathbf{K}^{+}	0.85	0.03	0.19
EC	0.81	0.41	0.20
H^{+}	-0.76	0.05	-0.13
SO_4^{2-}	0.10	0.93	0.26
F	0.04	0.89	0.12
NO ₃ ⁻	-0.11	0.89	0.27
Cl-	0.31	0.31	0.84
Na^+	0.58	0.16	0.75
${\rm NH_4}^+$	-0.24	0.28	0.68
Variance/%	41.7	24.1	16.6
Indicator	Soil and dust	Anthropogenic	Rock salt and agriculture
<i>n</i> =84.			

Marinoni et al. (2001) は,雪の化学成分での主成 分分析で,NH4⁺とK⁺,Mg²⁺が同じファクター に含まれた理由として,Sun et al. (1998) による 大気中のガス体や粒子体成分の沈着という雪の堆 積後の変化の影響を挙げている.このような報告 例は決して多くはないが,氷河の雪と氷の化学成 分の主成分分析の結果が,必ずしも化学成分の起 源のみで全て決定される訳ではないことを示唆し ている.氷河表面での堆積後変化も含め、今後も 検討が必要と考えられる.

4. 結論

アイスコアからの過去の気候・環境変動復元の 手がかりとするため、2004年8月・9月に中国西 部・祁連山脈の七一氷河表面の雪および氷と降水 の採取と化学成分分析を実施し、チベット高原周 辺の他の氷河の化学成分濃度との比較や統計解析 を行った.

氷河表面の雪と氷の平均 pH は 7.07 でありほ ぼ中性だった. 氷河表面の雪と氷では採取地点ご との化学成分濃度は、9月採取の一部地点での NO₃⁻, SO₄²⁻, F⁻を除き, 概ね一様であった. 七一氷河表面の雪の化学成分組成を、チベット高 原周辺およびヒマラヤ山脈の氷河の過去の研究例 と比較した結果,天山山脈の No.1 氷河と化学組 成や濃度の傾向が類似していた. こうした七一氷 河の解析結果と過去の研究例から、七一氷河を含 む祁連山脈の化学成分は、周囲の乾燥・半乾燥地 からのダストの影響を強く受けていると考えられ た. 総陽イオン濃度と総陰イオン濃度の差 (ΔC) は、Ca²⁺濃度とMg²⁺濃度の和と、r=0.98と非 常に高い相関が見られた. これらは土壌や黄土に 含まれる CaCO3をはじめとする炭酸塩鉱物を起 源とし、pH に大きな影響を与えていると考えら

れた. Na⁺濃度と Cl⁻濃度に r=0.93 と高い相関 が見られた. Na⁺/Cl⁻の値は, 平均 1.00±0.13 で あり, 両者の主要な起源は, 岩塩と考えられた.

氷河表面の雪と氷と,降水の化学成分組成を比 較した結果,総イオン濃度は,降水が最も低く, 次いで雪,氷の順となった. Ca^{2+} , $Mg^{2+} \ge \Delta C$ 濃度の割合は,降水に比べ,雪と氷で顕著に大き くなった.これは融解—凍結過程を経ることでダ ストからの溶解により Ca^{2+} , Mg^{2+} , HCO_3^{-} 濃 度が高くなることと乾性沈着の影響と思われた. 一方 NH₄⁺, NO₃⁻, SO₄²⁻の割合は,降水に比較 して雪と氷では顕著に小さくなった. NO_3^{-} で は,揮散や光分解,微生物活動の影響が考えられ たが,今後も検討が必要と思われた.

主成分分析の結果から、化学成分は土壌・ダスト起源、人為活動起源、岩塩起源と、主に起源別に区分可能と推察された. これらは相関係数とも整合的だった. 一方 NH_4^+ は、主に農業活動と考えられたが、 Na^+ と Cl^- と同じ岩塩起源とするファクターに含まれその原因ははっきりしなかった.

今後も氷河による過去の気候・環境変動への重 要な情報となる,表面の雪と氷および降水の化学 組成の解明が必要である.特に経済発展の続く中 国では,人為起源物質の排出増加に対する氷河上 の化学成分の変動解明も重要と考えられる.

謝 辞

イオン成分分析と pH, EC 分析を実施していた だきました国立極地研究所の小林智子さんと山田 廣宣さんに感謝します.また建設的かつ丁寧な査 読コメントをいただいた2名の査読者に感謝しま す.本研究の一部は,科学研究費補助金(課題番 号14209020)の助成を受けた.また人間文化研究 機構総合地球環境学研究所のオアシスプロジェク ト(水資源変動負荷に対するオアシス地域の適応 力評価とその歴史的変遷)にもよった.記して感 謝する.本論文の出版に際し,国立極地研究所論 文出版助成より援助を受けた. 文 献

- Barthelmy, D., 2013: Mineralogy Database, Halite Mineral Data, http://www.webmineral.com/data/Halite.shtml#. UgBuuhxv2Jk, 2013 年 8 月 8 日閲覧.
- Bertler, N., P. A. Mayewski, A. Aristarain, P. Barrett, S. Becagli, R. Bernardo, S. Bo, C. Xiao, M. Curran, D. Qin, D. Dixon, F. Ferron, H. Fischer, M. Frey, M. Frezzotti, F. Fundel, C. Genthon, R. Gragnani, G. Hamilton, M. Handley, S. Hong, E. Isaksson, J. Kang, J. Ren, K. Kamiyama, S. Kanamori, E. Kärkäs, L. Karlöf, S. Kaspari, K. Kreutz, A. Kurbatov, E. Meyerson, Y. Ming, M. Zhang, H. Motoyama, R. Mulvaney, H. Oerter, E. Osterberg, M. Proposito, A. Pyne, U. Ruth, J. Simões, B. Smith, S. Sneed, K. Teinilä, F. Traufetter, R. Udisti, A. Virkkula, O. Watanabe, B. Williamson, J-G. Winther, Y. Li, E. Wolff, Z. Li and A. Zielinski, 2005: Snow chemistry across Antarctica. Ann. Glaciol., 41, 167–179.
- Dominé, F. and P. B. Shepson, 2002: Air-snow interactions and atmospheric chemistry. *Science*, 297 (5586), 1506–1510.
- Feng, Y. W., N. Ogura, Z. W. Feng, F. Z. Zhang and H. Shimizu, 2003: The concentrations and sources of fluoride in atmospheric depositions in Beijing, China. *Water, Air, Soil Pollut.*, 145 (1-4), 95–107.
- Fujita, K., A. Sakai, Y. Matsuda, C. Narama, N. Naito, S. Yamaguchi, K. Hiyama, J. Pu, T. Yao and M. Nakawo, 2006: Topographical survey of July 1st Glacier in Qilian Mountains. China. *Bull Glaciol. Res.*, 23, 63–67.
- Ginot, P., C. Kull, M. Schwikowski, U. Schotterer and H. Gäggeler, 2001: Effect of post depositional processes on snow composition of a subtropical glacier (Cerro Tapado, Chilean Andes). J. Geophys. Res., 106 (D23), 32375–32386.
- 井上克弘,張 一飛,成瀬敏郎,1994:東アジア中緯度 域における雨水の水質に及ぼす広域風成塵の影響. 日本土壌肥料学雑誌,65(6),619-628.
- 井上克弘,張 一飛,板井一好,角田文男,趙静,1995: エアロゾル中のフッ素濃度に及ぼすアジア大陸起源 広域風成塵の影響.日本土壌肥料学雑誌, 66 (3), 223-232.
- Kang, S., D. Qin, P. A. Mayewski, S. B. Sneed and T. Yao, 2002: Chemical composition of fresh snow on Xixabangma peak, central Himalaya, during the summer monsoon season. J. Glaciol., 48 (161), 337–339.
- Kang, S., P. A. Mayewski, D. Qin, S. A. Sneed, J. Ren, D. Zhang, 2004: Seasonal differences in snow chemistry from the vicinity of Mt. Everest, central Himalayas.

Atmos. Environ., 38 (18), 2819-2829.

- Larssen, T., E. Lydersen, D. Tang, Y. He, J. Gao, H. Liu, L. Duan, H. M. Seip, R. D. Vogt, J. Mulder, M. Shao, Y. Wang, H. Shang, X. Zhang, S. Solberg, W. Aas, T. Økland, O. Eilertsen, V. Angell, Q. Liu, D. Zhao, R. Xiang, J. Xiao and J. Luo, 2006: Acid rain in China. *Environ. Sci. Technol.*, 40 (2), 418–425.
- Legrand, M. and P. Mayewski, 1997: Glaciochemistry of polar ice cores: A review. *Rev. Geophys.*, 35 (3), 219– 243.
- Li, Q., N. Wang, X. Wu, J. Pu, J. He and J. Xie, 2009: Compositional characteristics of *n*-alkanes of the glaciers over the Tibetan plateau and their environmental and climatic significances. *Sci. China Ser. D: Earth Sci.*, 52 (11), 1803–1812.
- Li, Q., N. Wang, X. Wu, J. Pu, J. He and C. Zhang, 2011: Sources and distribution of polycyclic aromatic hydrocarbons of different glaciers over the Tibetan Plateau. *Sci. China Ser. D: Earth Sci.*, 54 (8), 1189– 1198.
- Li, Z., H. Li, Z. Dong and M. Zhang, 2010: Chemical characteristics and environmental significance of fresh snow deposition on Urumqi Glacier No. 1 of Tienshan Mountains, China. *Chi. Geogra. Sci.*, **20** (5), 389–397.
- Liu, X., Y. Zhang, W. Han, A. Tang, J. Shen, Z. Cui, P. Vitousek, J. W. Erisman, K. Goulding, P. Christie, A. Fangmeier and F. Zhang, 2013: Enhanced nitrogen deposition over China. *Nature*, **494** (7438), 459–462.
- Marinoni, A., S. Polesello, C. Smiraglia and S. Valsecchi, 2001: Chemical composition of freshsnow samples from the southern slope of Mt. Everest region (Khumbu-Himal region, Nepal). Atmos. Environ., 35 (18), 3183–3190.
- Matsuda, Y., A. Sakai, K. Fujita, M. Nakawo, K. Duan, J. Pu, and T. Yao, 2004: Glaciological observations on July 1st Glacier in Qilian Mountains of west China during summer 2002. *Bull. Glaciol. Res.*, 21, 31–36.
- 三宅隆之,竹田一彦,藤原祺多夫,佐久川弘,2000:東 広島における降水中有機酸の濃度,沈着量および発 生源.日本化学会誌,(5),357-366.
- 永塚尚子,竹内 望,中野孝教,古角 恵,2011:アジ アの氷河上の鉱物粒子と有機物(クリオコナイト)の Sr,Nd同位体比.雪氷,73 (5),307-319.
- Ohara, T., H. Akimoto, J. Kurokawa, N. Horii, K. Yamaji, X. Yan and T. Hayasaka, 2007: An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. *Atmos. Chem. Phys.*, 7 (16), 4419– 4444.
- Okada, K. and K. Kai, 2004: Atmospheric mineral parti-

cles collected at Qira in the Taklamakan Desert, China. *Atmos. Environ.*, **38** (40), 6927–6935.

- Petit, J. R., J. Jouzel, D. Raynaud, N. I. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzmank and M. Stievenard, 1999: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. *Nature*, **399** (6735), 429-436.
- Pu, J., T. Yao, K. Duan, A. Sakai, K. Fujita and Y. Matsuda, 2005: Mass balance of the Qiyi Glacier in the Qilian Mountains: A new observation. J. Glaciol. Geocryol., 27 (2), 199–204. (in Chinese with English abstract)
- Sakai, A., Y. Matsuda, K. Fujita, S. Matoba, J. Uetake, K. Satow, K. Duan, J. Pu, M. Nakawo and T. Yao, 2006a: Meteorological observation at July 1st Glacier in northwest China from 2002 to 2005. *Bull Glaciol. Res.*, 23, 23–32.
- Sakai, A., Y. Matsuda, K. Fujita, K. Duan, J. Pu, S. Yamaguchi, M. Nakawo and T. Yao, 2006b: Hydrological observations at July 1st Glacier in northwest China from 2002 to 2005. *Bull. Glaciol. Res.*, 23, 33–39.
- Sakai, A., K. Fujita, K. Duan, J. Pu, M. Nakawo and T. Yao, 2006c: Five decades of shrinkage of July 1st glacier, Qilian Shan, China. J. Glaciol., 52 (176), 11–16.
- Sun, J., D. Qin, P. A. Mayewski, J. E. Dibb, S. Whitlow, Z. Li and Q. Yang, 1998: Soluble species in aerosol and snow and their relationship at Glacier 1, Tien Shan, China. J. Geophys. Res., 103 (D21), 28021–28028.
- Takeuchi, N., Y. Matsuda, A. Sakai and K. Fujita, 2005: A large amount of biogenic surface dust (cryoconite) on a glacier in the Qilian Mountains, China. *Bull. Glaciol. Res.*, 22, 1–8.
- Thompson, L. G., E. Mosley-Thompson, M. E. Davis, J. F. Bolzan, J. Dai, T. Yao, N. Gundestrup, X. Wu, L. Klein and Z. Xie, 1989: Holocene-late Pleistocene climatic ice core records from Qinghai-Tibetan Plateau. *Science*, 246 (4929), 474–477.
- 角皆静男, 乗木新一郎, 1983:海洋化学—化学で海を解 く, 西村雅吉編, 産業図書, pp.4.
- 鶴田治雄,1991:黄砂と降水の化学組成,大気水圏の科 学---黄砂,名古屋大学大気水圏科学研究所編,古今書 院,pp.268-279.
- Uetake, J., A. Sakai, Y. Matsuda, K. Fujita, H. Narita, S. Matoba, K. Duan, M. Nakawo and T. Yao, 2006: Preliminary observations of sub-surface and shallow ice core at July 1st Glacier, China in 2002–2004. *Bull. Glaciol. Res.*, 23, 85–93.

- Wake, C. P., P. A. Mayewski and M. J. Spencer, 1990: A review of central Asian glaciochemical data. Ann. Glacial., 14, 301–306.
- Wake, C. P., P. A. Mayewski, Z. Xie, P. Wang and Z. Li, 1993: Regional distribution of monsoon and desert dust signals recorded in Asian glaciers. *Geophys. Res. Lett.*, **20** (14), 1411–1414.
- Williams, M. W. and J. M. Melack, 1991: Solute chemistry of snowmelt and runoff in an alpine basin, Sierra Nevada, *Water Resour. Res.*, 27 (7), 1575–1588.
- Williams, M. W., K. A. Tonnessen, J. M. Melack and Y. Daqing, 1992: Sources and spatial variation of the chemical composition of snow in the Tien Shan, China. *Ann. Glaciol.*, 16, 25–32.
- Wu, X., N. Wang and Q. Li, 2009: Diurnal variation of meltwater chemistry in the Qiyi Glacier during the late ablation period. *J. Glaciol. Geocryol.*, **31** (6), 1080– 1085. (in Chinese with English abstract)
- Xiao, C., S. Kang, D. Qin, T. Yao and J. Ren, 2002: Transport of atmospheric impurities over the Qinghai-Xizang (Tibetan) Plateau as shown by snow chemistry. *J. Asian Earth Sci.*, **20** (3), 231–239.

- Yabuki, S., M. Mikami, Y. Nakamura, S. Kanayama, F. Fu, M. Liu and H. Zhou, 2005: The characteristics of atmospheric aerosol at Aksu, an Asian dust-source region of north-west China: A summary of observations over the three years from March 2001 to April 2004. J. Meteorol. Soc. Jpn., 83A, 45–72.
- Zhang, D. D., C. Y. Jim, M. R. Peart and C. Shi, 2003a: Rapid changes of precipitation pH in Qinghai Province, the northeastern Tibetan Plateau. *Sci. Total Environ.*, **305** (1-3), 241-248.
- Zhang, D.D., M. Peart, C. Y. Jim, Y. Q. He, B. S. Li and J. A. Chen, 2003b: Precipitation chemistry of Lhasa and other remote towns, Tibet. *Atmos. Environ.*, 37 (2), 231–240.
- Zhang, X., Z. Shen, G. Zhang, T. Chen and H. Liu, 1996: Remote mineral aerosols in westerlies and their contributions to the Chinese loess. *Sci. China (Ser. D)*, **39** (2), 134–143.
- Zhao, D., H. M. Seip, D. Zhao and D. Zhang, 1994: Pattern and cause of acidic deposition in the Chongqing region, Sichuan Province, China. *Water, Air, Soil Pollut.*, 77 (1-2), 27-48.

Chemical composition of surface snow and ice, and precipitation on Qiyi Glacier, Qilian Mountains, western China

Takayuki MIYAKE^{1*}, Jun UETAKE^{1,2}, Sumito MATOBA³, Akiko SAKAI⁴, Koji FUJITA⁴, Yoshiyuki FUJII¹, Tandong YAO⁵ and Masayoshi NAKAWO⁶

¹National Institute of Polar Research, Research Organization of Information and Systems, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518

² Transdisciplinary Research Integration Center, Research Organization of Information and Systems,

Hulic Kamiyacho Building 2F, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001

³ Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819

⁴ Graduate School of Environmental Studies, Nagoya University,

F3-1 (200), Furo-cho, Chikusa-ku, Nagoya 464-8601

⁵ Institute of Tibetan Plateau Research, Chinese Academy of Science, Beijing 100101, China

⁶ National Institute of the Humanities, Hulic Kamiyacho Building 2F,

4-3-13 Toranomon, Minato-ku, Tokyo 105-0001

* Corresponding author: tmiyakeq2011@gmail.com

Abstract: In order to reconstruct the past climate and environmental changes, we carried out sampling and chemical analyses of surface snow and ice, and precipitation on Qiyi Glacier, Qilian Mountains, western China, in August and September 2004. A mean pH value of surface snow and ice was 7.07. We found high correlation (r=0.98) between difference of total cations concentration and total anions concentration (ΔC) and Ca²⁺ + Mg²⁺ concentrations. It was indicated that these sources were carbonate mineral such as CaCO3 in soil and loess and these species influenced pH of surface snow and ice of the glacier. The chemical composition of Qiyi Glacier was similar to that of glaciers of the Tien Shan, suggesting that that of the glacier was strongly affected from aeolian dust from arid/semi-arid regions. It was suggested that a source of Na⁺ and Cl⁻ in surface snow and ice was mainly rock salt (halite) at the glacier, because both species had high correlation (r=0.93) and mean of Na⁺/Cl⁻ ratio was almost 1.00. Ratios of Ca²⁺, Mg²⁺ and ΔC to total ionic concentrations at the glacier. It was suggested that these were influenced by dissolution of dust with melt-freeze processes and dry deposition. The sources of chemical species except NH4⁺ in the samples were estimated such as soil and dust, anthropogenic and rock salt based on the results of the principal component analysis (PCA).

(2013年5月17日受付,2013年9月8日改稿受付,2013年11月26日最終改稿受付, 2013年11月27日受理,討論期限2014年7月15日)