Inconsistent relationships between major ions and water stable isotopes in Antarctic snow under different accumulation environments

Yu Hoshina a, b, *, Koji Fujita a, Yoshinori Iizuka c, Hideaki Motoyama d, e

a Graduate School of Environmental Studies, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
b Now at National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
c Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
d National Institute of Polar Research, 10-3 Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan
e SOKENDAI (The Graduate University for Advanced Studies), Tokyo 190-8518, Japan

A R T I C L E I N F O

Article history:
Received 24 February 2015
Received in revised form 21 November 2015
Accepted 18 December 2015
Available online 21 December 2015

Keywords:
Ice core
Water stable isotope
Major ion
Antarctica
Accumulation rate

A B S T R A C T

Major ions, stable oxygen isotopes (δ18O), and accumulation rates are analyzed using high temporal resolution data from shallow ice cores and snow pits from East and West Antarctica. Seasonal cycles of major ions and δ18O are well preserved at sites with an accumulation rate threshold of >100 kg m\(^{-2}\) a\(^{-1}\) and calm wind conditions. The seasonal cycle is unclear at sites with high wind speeds, even if the accumulation rate is greater than the threshold. To eliminate the influences of different source regions on major ion and δ18O signals in ice cores, we calculate correlation coefficients between annually averaged major ion concentrations and δ18O, and then compare these with accumulation rates and other geographical variables such as latitude, elevation, and distance from the coast. We find that accumulation rates are highly correlated with elevation and the 10-m snow temperature, and that major ions and δ18O are negatively correlated at low accumulation sites in inland Antarctica. Negative correlations could reflect inconsistent accumulation due to a large inter-annual variability in the accumulation rate. The results show that the relationships between major ions and δ18O may not reflect climatic signatures, and could be a result of the unique characteristics of this arid environment.

© 2015 Elsevier B.V. and NIPR. All rights reserved.

1. Introduction

Deep ice cores from inland Antarctica have contributed to a better understanding of global paleoclimate. Water stable isotopes in ice cores can be used as proxies for in situ and moisture source temperatures (Petit et al., 1999; Johnsen et al., 2001; Uemura et al., 2012). Major soluble ions are widely used as proxies of past climate, including ions from sea salt (Na\(^+\) and Cl\(^-\)), which are thought to be a proxy for sea ice extent (e.g., Wolff et al., 2006; Fischer et al., 2007). Shallow ice cores from humid environments, where the accumulation rate is more than 300 kg m\(^{-2}\) a\(^{-1}\) (e.g., Fernandoy et al., 2010), provide high temporal resolution paleoclimate information on regional and/or global scales. In coastal regions, variations in the concentrations of CH\(_2\)SO\(_3\)\(^-\) and non-sea-salt (nss) SO\(_4\)\(^{2-}\) are used as proxies for marine biological activity, which has been shown to vary with sea ice extent during the Holocene (Curran et al., 2003; Sneed et al., 2011).

Recent advances in analytical technologies have enabled ice core researchers to analyze polar ice cores at a high temporal resolution on annual to seasonal time scales (Steig et al., 2005; Iizuka et al., 2006; de Angelis et al., 2013). However, minimum temporal resolutions are constrained by the sampling interval and the annual accumulation rate.

Deep ice cores covering several glacial cycles, such as Vostok, Dome C, and Dome F, have been drilled in arid environments, where the accumulation rate is less than 50 kg m\(^{-2}\) a\(^{-1}\) (e.g., Johnsen et al., 2001; EPICA, 2004; Masson-Delmotte et al., 2011; Uemura et al., 2012). It is well known that the original isotopic (and thus temperature) signals are smoothed by isotopic diffusion in firm and ice (Johnsen, 1977; Pol et al., 2010), but it is not well understood how surface snow changes over time after deposition. Recently post-depositional alteration of water stable isotopes in surface
snow has been studied using in situ data (Ekaykin et al., 2002; Hoshina et al., 2014) and simulations (Neumann and Waddington, 2004; Town et al., 2008). Studies of the post-depositional alteration of major ions have shown that gaseous ions (Cl−, NO\textsubscript{3}−, and CH\textsubscript{3}SO\textsubscript{4}−) tend to be lost by volatilization from the upper firm to the atmosphere (Wagnon et al., 1999; Delmas et al., 2003a). By comparing three ice cores around Law Dome, Curran et al. (2002) showed that CH\textsubscript{3}SO\textsubscript{4}− from summer layers could relocate to winter layers. Additionally, chloride from sea salt is replaced by sulfate after deposition by transportation from the ocean toward inland areas (Delmas et al., 2003b; Iizuka et al., 2012).

It is difficult to obtain high temporal resolution data from polar ice cores drilled in extremely arid environments. Because of insufficient understanding of post-depositional alteration, it is also unclear whether the interpretation of chemical signals in coastal (high accumulation) ice cores can be applied to cores retrieved from low accumulation sites in central Antarctica. Previous studies dealing with post-depositional alteration and the validity of major ions as climate proxies have focused on individual sites rather than discussing spatial variations (e.g., Curran et al., 2002; Goktas et al., 2002; Karlolf et al., 2005). In this study, we consider how accumulation rates constrain the temporal variation of chemical and isotopic signals, and affect the relationship between major ions and δ18O (and thus temperature) preserved in Antarctic snow.

2. Data and methods

We use major soluble ion concentrations (CH\textsubscript{3}SO\textsubscript{4}−, Cl−, NO\textsubscript{3}−, SO\textsubscript{4}2−, and Na+) and δ18O collected from three snow pits and seven shallow ice cores widely distributed across East and West Antarctica (Fig. 1). The periods analyzed are limited to between 1966 (or later) to the years in which each pit or core was collected (Table 1). The three snow pits (DF, DK, and MP), dug in the summer of 2007 by the Japanese Swedish Antarctic Expedition (JASE) (Fujita et al., 2011; Iizuka et al., 2012; Hoshina et al., 2014), were sampled at 0.02 m intervals (or 0.18–0.25 year intervals) (Hoshina et al., 2014) and were dated using crust layers and variations in Na+ and Cl−/Na+ (Hoshina et al., 2014).

Two of the ice cores were collected by the Japanese Antarctic Research Expedition (JARE) at a coastal site in Dronning Maud Land: H72 was collected in 1993 (Nishio et al., 2002; Suzuki et al., 2005) and YM85 was collected in 2002 (Takahashi et al., 2009). These cores were dated by variations in CH\textsubscript{3}SO\textsubscript{4}− (H72; Suzuki et al., 2005) and CH\textsubscript{3}SO\textsubscript{4}−, NO\textsubscript{3}−, and nssSO\textsubscript{4}\textsubscript{2−} (YM85; Takahashi et al., 2009). Sampling intervals in the H72 and YM85 ice core were 0.04–0.06 m (0.10 years) and 0.02–0.06 m (0.16 years), respectively (Suzuki et al., 2005; Takahashi et al., 2009). Both cores preserved seasonal records of major ions due to their high accumulation rates (128–306 kg m−2 a−1). We also use sub-annual records from five ice cores retrieved from West Antarctica (Fig. 1) by the United States International Trans-Antarctic Scientific Expedition (US ITASE; Dixon et al., 2004; Steig et al., 2005). These ice cores were dated using variations in nssSO\textsubscript{4}2− (Steig et al., 2005; Mayewski and Dixon, 2013), and the accumulation rates and sampling intervals were 120–470 kg m−2 a−1 and 0.082 m (0.03–0.09 years), respectively.

To analyze how geographical and climatic settings affect chemical signals preserved in snow, we use accumulation rate data compiled from stake measurements every 2 km along the JARE traverse route (Fig. 1) for the period 1993–2010 (Motoyama et al., 1995, 2002, 2008; Shiraiwa et al., 1996; Azuma et al., 1997; Furukawa et al., 2002; Kameda et al., 2007; Saito et al., 2007) along with snow density data (349–427 kg m−3) (Sugiyama et al., 2012). We also use 10-m snow temperature data from the JARE traverse route and US ITASE sites (Satow and Watanabe, 1992; Nishio et al., 2002; Dixon, 2007).

It is possible that the chemical components used in this study were modified during transport from their origin to the site of deposition; however, water stable isotopes from precipitation correlate well with air temperature at the sites at seasonal to
millennial scales (e.g., Dansgaard, 1964; Fujita and Abe, 2006; Fernandoy et al., 2012). We therefore calculate the correlation coefficients for major ions and δ18O, and then compare these correlations with the accumulation rate and other parameters such as distance from coast, elevation, and latitude.

3. Results

3.1. Stable oxygen isotope and major ion signals

Accumulation rates along the JARE traverse gradually decrease with increasing latitude (Fig. 2a). We also find high variability in accumulation rates at lower latitudes (error bars in Fig. 2a). We therefore define a katabatic region using a coefficient of variation (CV) threshold of 1 (averaged every 1° of latitude) (Fig. 2b), as frequent wind erosion and thus loss of annual snow is expected to be associated with a high CV. We then categorize the traverse route into three regions: coastal (69.0°S–69.7°S), katabatic (69.7°S–74.3°S), and inland (74.3°S–77.3°S).

The JARE ice core sites are located in the coastal (H72) and katabatic (YM85) regions, whilst the JASE pit sites are situated in the inland region. Large variability in the accumulation rate in the katabatic region is reflected in both the CVs of individual stake measurements (>2 of CV) and in average values at 1° latitude intervals (>1 of CV) (Fig. 2b). Negative accumulation rates, usually caused by wind erosion, are commonly observed in this region (Furukawa et al., 1996), and it is therefore expected that the seasonal cycle of chemical components and water stable isotopes would not be preserved in the YM85 core.

Figs. 3 and 4 show Na+, CH3SO3−, and nssSO42− profiles along with δ18O from ice cores and snow pits, ordered from high (top) to low (bottom) accumulation rates. Cl− profiles are not shown because of strong correlations with Na+ (r > 0.84) at all sites. δ18O and major ion signals have high-frequency variability at sites with high accumulation rates (upper sites in Figs. 3 and 4) and become smoother at sites with low accumulation rates (lower sites in Figs. 3 and 4). At the high-accumulation sites, nssSO42− peaks seem to correspond with those of δ18O (Fig. 4a–e); however, this relationship is less clear at the lower-accumulation sites (Fig. 4f–j). Furthermore, CH3SO3− is clearly in-phase with nssSO42− at two sites (DK and DF) during periods of low accumulation (Fig. 4i and j).

Periodicities of chemical signals in snow packs and ice cores were calculated using the Fast Fourier Transformation (FFT) to evaluate the preservation of original chemical seasonal cycles. The time interval of the samples is not uniform, so the periodicity was calculated using interpolated data. The trend found in Fig. 4, in which the signal frequency becomes unclear at low accumulation rates, is also found in statistically significant major ion and δ18O FFT periods plotted against the accumulation rate (Fig. 5). At sites where the accumulation rate is >100 kg m−2 a−1, δ18O, nssSO42−, and CH3SO3− profiles show multi-year fluctuations, but at low-accumulation sites they show no annual cycle (Fig. 5a, c, and d). The Na+ profile, however, exhibits both multi-year and annual cycles at low-accumulation sites (Fig. 5b). CH3SO3− and nssSO42− exhibit similar trends at low and high accumulation sites (Fig. 5c and d).

3.2. Correlations between major ions and stable oxygen isotopes

As chemical components in ice cores and snow pits have different temporal resolutions and frequencies (Table 1 and Fig. 5), we compare annual variations in ions and δ18O after removal of the seasonal cycle to investigate the influence of the accumulation rate on the preservation of major ion signals. Although ion concentrations over Antarctica are controlled by various factors such as

| Table 1 |

| Location, period, accumulation rate, and temporal resolution of ice cores and snow pit sites. Accumulation rates and time resolutions are averaged from the surface to 1966 (or bottom). |

<table>
<thead>
<tr>
<th>Site</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Elevation (m a.s.l.)</th>
<th>Year of sampling</th>
<th>Period covered</th>
<th>Accumulation rate (kg m−2 a−1)</th>
<th>Time resolution (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>39°47'W</td>
<td>77°18'S</td>
<td>3765</td>
<td>2007</td>
<td>1966–2006</td>
<td>27.3 ± 16.8</td>
<td>0.25</td>
</tr>
<tr>
<td>DK</td>
<td>31°45'E</td>
<td>76°48'S</td>
<td>3733</td>
<td>2007</td>
<td>1986–2006</td>
<td>34.8 ± 13.4</td>
<td>0.21</td>
</tr>
<tr>
<td>MP</td>
<td>25°50'E</td>
<td>75°53'S</td>
<td>3656</td>
<td>2007</td>
<td>1971–2006</td>
<td>40.7 ± 13.1</td>
<td>0.18</td>
</tr>
<tr>
<td>YM85</td>
<td>40°38'E</td>
<td>71°35'S</td>
<td>2246</td>
<td>2002</td>
<td>1966–1998</td>
<td>128.2 ± 57.3</td>
<td>0.16</td>
</tr>
<tr>
<td>H72</td>
<td>41°05'E</td>
<td>69°12'S</td>
<td>1214</td>
<td>1998</td>
<td>1966–1997</td>
<td>365.7 ± 98.7</td>
<td>0.10</td>
</tr>
<tr>
<td>ITASE00-1</td>
<td>112°46'W</td>
<td>80°37'S</td>
<td>1791</td>
<td>2000</td>
<td>1966–2000</td>
<td>236.0 ± 62.1</td>
<td>0.06</td>
</tr>
<tr>
<td>ITASE00-4</td>
<td>121°55'W</td>
<td>79°55'S</td>
<td>1697</td>
<td>2000</td>
<td>1966–1999</td>
<td>184.5 ± 40.9</td>
<td>0.08</td>
</tr>
<tr>
<td>ITASE01-2</td>
<td>103°05'W</td>
<td>78°09'S</td>
<td>1336</td>
<td>2001</td>
<td>1966–2001</td>
<td>466.6 ± 77.0</td>
<td>0.06</td>
</tr>
<tr>
<td>ITASE01-5</td>
<td>90°52'W</td>
<td>78°50'S</td>
<td>1140</td>
<td>2001</td>
<td>1966–2000</td>
<td>346.9 ± 86.0</td>
<td>0.03</td>
</tr>
<tr>
<td>ITASE02-4</td>
<td>108°01'W</td>
<td>87°30'S</td>
<td>2586</td>
<td>2002</td>
<td>1966–1997</td>
<td>117.9 ± 38.2</td>
<td>0.09</td>
</tr>
</tbody>
</table>
distance from the source to the sampling site, precipitation seasonality, and the contribution of dry and wet deposition, it is not possible to reconstruct the spatial distribution of these factors from post-depositional snow samples. On the other hand, annual temperature, which is generally recorded in water stable isotopes, is a key variable to help understand the distribution of other chemical species in snow and ice profiles. We therefore calculate correlation coefficients between major ions and as it implies that the correlation is based on δ^{18}O as a temperature proxy (Dansgaard, 1964; Fujita and Abe, 2006; Fernandoy et al., 2012).

Fig. 6 shows the correlation coefficients for annually averaged concentrations and fluxes of major ions and δ^{18}O plotted against the accumulation rate. There are no significant differences between concentrations (Fig. 6a) and fluxes (Fig. 6b). It is expected that the correlations of Cl$^-$ and Na$^+$ with δ^{18}O would have similar signals due to their common origin from the ocean. However, they show no correlation when the accumulation rate is >185 kg m$^{-2}$ a$^{-1}$. Additionally, correlations become gradually more negative from coastal
high-accumulation regions to the inland low-accumulation regions, where significant negative correlations were found. Temporal series of Na\(^+\) and δ^{18}O also show that minimum Na\(^+\) and maximum δ^{18}O values are most consistent at the lowest-accumulation sites (MP, DK, and DF in Fig. 3h–j). On the other hand, CH\(_3\)SO\(_4\)\(^-\) and nssSO\(_4^{2-}\) have insignificant (slightly positive) correlations with δ^{18}O at both high and low accumulation regions, but correlations become significant at the lowest-accumulation sites. NO\(_3^-\) is positively correlated with δ^{18}O for accumulation rates of 100–200 kg m\(^{-2}\) a\(^{-1}\), but no significant correlation is found for accumulation rates of >200 kg m\(^{-2}\) a\(^{-1}\) and <100 kg m\(^{-2}\) a\(^{-1}\).

4. Discussion

4.1. Spatial variability in accumulation rates

The seasonal cycle of oxygen isotopes and major ions in ice cores and snow pits is preserved at sites with accumulation rates >100 kg m\(^{-2}\) a\(^{-1}\) (Fig. 5) despite the fact that snow at individual sites has different sources and transport pathways. Moreover, relationships between isotopes, major ions, accumulation rates, and geographical variables differ for ice core sites in East and West Antarctica. Fig. 7 shows correlation coefficients for both major ions and δ^{18}O with elevation, latitude, distance from the coast, and 10-m snow temperature. Trends in correlation coefficients with elevation (Fig. 7a) and 10-m temperature (Fig. 7d) are related to the strong negative correlation between elevation and both annual

Fig. 4. Profiles of CH\(_3\)SO\(_4\)\(^-\) (pink), nssSO\(_4^{2-}\) (green), and δ^{18}O (black) in ice cores and snow pits ordered from high (top) to low (bottom) accumulation rates.
temperature (higher elevations result in colder temperatures) and accumulation rates (Fig. 6). The 10-m temperature trend is explained by the Clausius–Clapeyron equation in which colder temperatures result in drier air masses. On the other hand, latitude (Fig. 7a) and distance from the coast (Fig. 7b) do not completely depend on the correlation coefficients. This discrepancy is explained by the correlations between geographical variables and the accumulation rate; the accumulation rate has a strong correlation with elevation ($r = -0.80, p < 0.05$) and 10-m temperature ($r = 0.86, p < 0.05$), but this is not the case for latitude ($r = -0.02, p = 0.96$) or distance from the coast ($r = -0.70, p < 0.1$).

Suzuki et al. (2013) used back trajectory analysis to show that air parcels over West Antarctica mainly originate from the ocean year-round, whereas source regions for air parcels over East Antarctica are seasonal, originating from inland in summer and from the ocean in winter. Sodemann and Stohl (2009) also indicated a difference in moisture sources for coastal and inland Antarctica. The insignificant relationship between latitude and distance from the coast (Fig. 7c) most likely reflects the different transportation processes of air parcels over East and West Antarctica. The strong correlations between elevation, 10-m temperature, and accumulation rate suggest that the accumulation rate is governed by elevation and to a lesser extent temperature. Similarity in the spatial distribution of precipitation with elevation (Bromwich et al., 2004) also supports the relationship suggested above. Correlation coefficients for the above-mentioned geographical variables assume average conditions over Antarctica, while those between the major ions and δ^{18}O (Figs. 6 and 7) reflect the inter-annual variability of major ions and temperature.

Our classification of the JARE traverse route (coastal, katabatic, and inland regions) based on the CV of the accumulation rate (Fig. 2) is broadly consistent with that used by Furukawa et al. (1996). These authors identified uniform accumulation zones by...
analyzing offshore cyclones in the high-accumulation coastal region, sporadic accumulation zones in the katabatic region, and low-accumulation inland zones, based on surface features observed during multiple expeditions between October 1992 and January 1994. According to these categories, the YMB5 core is located in the katabatic region, and Takahashi et al. (2009) concluded that the high accumulation rate should result in the preservation of annual layers and seasonal cycles in the core. Our analysis suggests that seasonal cycles are not preserved in the YMB5 core (Figs. 3f, 4f and 5), but seasonal cycles are preserved in the ITASE02-4 core (Figs. 3g, 4g and 5), although the accumulation rate of the ITASE02-4 core (118 kg m^{-2} a^{-1}; Mayewski and Dixon, 2013) is estimated to be less than that of the YMB5 core (128 kg m^{-2} a^{-1}). In addition, seasonal cycles are also preserved in the ITASE00-1 core (Figs. 3d, 4d and 5), although the site appears to be characterized by strong winds, with monthly average winter winds speeds at a nearby automatic weather station of >10 m s^{-1} (Keller et al., 2003, 2007, 2008).

Stake measurements taken along the JARE traverse route show that the annual accumulation rate is often negative in the katabatic region as a result of surface erosion (Fig. 2a). These measurements also suggest that sites with accumulation rates of >200 kg m^{-2} a^{-1} are less susceptible to surface erosion. We therefore conclude that seasonal cycles in the YMB5 core were disturbed by katabatic wind because of insufficient accumulation rates (<200 kg m^{-2} a^{-1}), while the two ITASE sites result in preservation of seasonal cycles under low accumulation in the calm region (ITASE02-4) or high accumulation in the katabatic region (ITASE00-1).

4.2. Negative correlations between major ions and δ^{18}O at low-accumulation sites

Correlations between major ions and δ^{18}O in ice cores and snow pits across East and West Antarctica show slightly positive (CH_3SO_3^- and NSSO_4^{2-}) or no (Na^+ and Cl^-) correlation at sites with high accumulation rates (>150 kg m^{-2} a^{-1}), whereas strong negative correlations are found for the majority of ions (except for NO_3^-) at sites with low accumulation rates (<100 kg m^{-2} a^{-1}) (Fig. 6). Similarly, negative correlations between ions and δ^{18}O are found in ice cores from west Droning Maud Land. Isaksson et al. (2001) did not indicate any significant correlations between major ion concentrations and δ^{18}O, but show negative correlations in 7-year moving variations of major ions concentrations and δ^{18}O in the Amundsenisen ice core, where the annual accumulation rate was estimated to be 70–80 kg m^{-2} a^{-1} (Isaksson et al., 1996). On the other hand, negative correlations are not found in ice cores at high-accumulation sites such as Styx Glacier (203 kg m^{-2} a^{-1}) and McCarthy Ridge (260 kg m^{-2} a^{-1}) (Stenni et al., 2000). Given that sources and transportation processes might be different between sampling sites (Suzuki et al., 2013), our data (Fig. 6) and other records suggest that the relationship between the major ions and δ^{18}O is governed by the accumulation rate, which reflects both elevation and the annual

Table 2

<table>
<thead>
<tr>
<th>Site</th>
<th>Distance from coast (km)</th>
<th>10-m Snow temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>986</td>
<td>-57.7 (Kameda et al., 2007)</td>
</tr>
<tr>
<td>DK</td>
<td>833</td>
<td>-38.0 (Matsumura et al., 2005)</td>
</tr>
<tr>
<td>MP</td>
<td>667</td>
<td>-37.2 (Matsumura et al., 2005)</td>
</tr>
<tr>
<td>YMB5</td>
<td>290</td>
<td>-38.0 (Matsumura et al., 2005)</td>
</tr>
<tr>
<td>ITASE00-1</td>
<td>475</td>
<td>-20.3 (Matsumura et al., 2005)</td>
</tr>
<tr>
<td>ITASE00-4</td>
<td>460</td>
<td>-25.0 (Dixon, 2007)</td>
</tr>
<tr>
<td>ITASE01-2</td>
<td>295</td>
<td>-26.4 (Dixon, 2007)</td>
</tr>
<tr>
<td>ITASE01-5</td>
<td>400</td>
<td>-26.4 (Dixon, 2007)</td>
</tr>
<tr>
<td>ITASE02-4</td>
<td>1074</td>
<td>-26.4 (Dixon, 2007)</td>
</tr>
</tbody>
</table>

* Dixon et al. (2004).
average temperature (Fig. 7a and d). In particular, negative correlations between major ions and δ18O are most common at low-accumulation sites (<100 kg m⁻² a⁻¹). Considering that seasonal cycles are preserved in ice cores from humid environments (Figs. 3–5), the original relationship between δ18O and the major ions should not be statistically significant on an inter-annual timescale (Fig. 6). In extremely low-accumulation environments, on the other hand, Hoshina et al. (2014) found that multi-year cycles of δ18O in JASE snow pits (MP, DK, and DF) are not correlated with air temperature fluctuations. They speculated that the multi-year cycle could result from post-depositional alterations, such as ventilation (airflow from the surface through the firm layer) and/or the condensation–sublimation of vapor driven by non-uniform accumulation (Kameda et al., 2008). Ventilation may also smooth the δ18O trough in winter, and this effect may be more pronounced in low-accumulation environments (Neumann and Waddington, 2004; Town et al., 2008).

Town et al. (2008) considered diffusion processes solely for oxygen isotopes; however, we suggest that vapor transfer processes between the snow pack and atmosphere could also modify major ions and hence form negative correlations with δ18O. When water vapor sublimes from ice grains under extremely low temperatures, isotopic fractionation does not occur because of the slow divergence of water molecules within ice grains, but ion concentrations increase due to sublimation processes. On the other hand, the condensation of water vapor should cause isotopic fractionation and increase δ18O and dilution should decrease ion concentrations. In particular, condensation of water vapor from the atmosphere to near-surface snow will modify δ18O and ion concentration of snow by ventilation (Town et al., 2008) and/or form surface hoar. Such changes in δ18O and ion concentrations could potentially modify their original relationships, and negative correlations would be enhanced by low accumulation and high variability in accumulation rates (Hoshina et al., 2014).

In low-accumulation environments, the negative relationship between Na⁺ and δ18O in snow shows seasonal fluctuations (Iizuka et al., 2004). Na⁺ in the snow pack in low-accumulation environments shows both annual and multi-year fluctuations (Fig. 5b); however, δ18O shows only multi-year cycles formed by post-depositional alterations such as ventilation and/or condensation–sublimation of vapor (Hoshina et al., 2014). The negative relationship between Na⁺ and δ18O at a seasonal scale is lost between snow precipitation and the snow pack, and the negative relationship in multi-year fluctuations is enhanced. Similar relationships between Na⁺ and δ18O have been proposed from recent ice core evidence (Wolff et al., 2006; Röthlisberger and Abram, 2009). Our results indicate that Na⁺ is most effective on a multi-year scale as an ice-core proxy for past temperature, even if annual scale fluctuations are preserved.

It is still unclear, however, why the relationships between Na⁺ and Cl⁻ and CH₃SO₃⁻ and nssSO₄²⁻ vary with the accumulation rate (as shown by correlation coefficients with δ18O in Fig. 6). The trends towards more negative Na⁺ and Cl⁻ correlations with lower accumulation rates suggest that negative relationships were formed during transportation. However, the relationship between CH₃SO₃⁻ and nssSO₄²⁻ seems to be insignificant throughout Antarctica except at very low accumulation sites (Fig. 6). To clarify these findings we need more evidence from the various environments across Antarctica to better understand paleo-environmental proxies and chemical signals embedded in snow and ice cores.

5. Conclusions

We compare major ions with δ18O in shallow ice cores and snow pits under different accumulation environments in East and West Antarctica. Despite different sources and transportation processes, correlation coefficients among annually averaged components show similar trends, i.e., correlations of Na⁺ and Cl⁻ with δ18O gradually change from showing no correlation to exhibiting negative correlations with decreasing accumulation, while those of CH₃SO₃⁻ and nssSO₄²⁻ are only significantly negative in the most arid environments in inland Antarctica (Fig. 6). Our analyses, using data from sites with a range of accumulation rates, indicate that an accumulation rate of 100 kg m⁻² a⁻¹ is the threshold for formation of a negative correlation between chemical species. In addition, the original seasonal cycle can be preserved in snow if the accumulation rate is greater than the threshold under calm wind conditions, whereas the cycle is unclear in the katabatic region, even if the accumulation rate is greater than the threshold.

Significant negative correlations in very low-accumulation environments can be formed by ventilation and vapor transfer within snow and the formation of surface hoar, which potentially increases δ18O by isotopic fractionation and dilutes ion concentrations. Recent advances in analytical technologies allow ice-core researchers to deal with fine temporal resolutions, such as decadal to annual time scales (Steig et al., 2005; Iizuka et al., 2006; de Angelis et al., 2013). However, Hoshina et al. (2014) demonstrated that periodic signals embedded in snow under extremely arid environments were multi-year and not seasonal. They concluded that these multi-year cycles could be formed by post-depositional alteration, driven by the variable accumulation of snow due to low accumulation rates with large inter-annual variability.

This study demonstrates that relationships between major ions and δ18O may not reflect the climatic footprint, but may be a unique signal of major ions and δ18O in extremely arid environments. We also show that the accumulation rate (with a threshold of 100 kg m⁻² a⁻¹) and wind speed affect the preservation of seasonal cycles in snow. Recent accumulation events over East Antarctica might form major ion and δ18O seasonal cycles if annual accumulation exceeds the threshold. Our analysis also shows that elevation and annual mean temperature correlate well with accumulation rates. This finding suggests that climate change associated with glacial to inter-glacial cycles might significantly alter the accumulation rate and thus form different periodicities in the respective climate.

To better understand processes that govern the formation of negative correlations between chemical species in snow and ice records, more evidence is required from very arid environments, such as those favored for drilling deep ice cores. In addition, we speculate that processes such as ventilation and vapor transfer within snow and the formation of surface hoar could alter δ18O and major ion concentrations in post-depositional environments. In situ observational and/or experimental research will help to quantitatively evaluate the contributions of these processes.

Acknowledgments

We thank US ITASE, JARE, and JASE for sharing their valuable data.

References

