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Contrasting glacier responses to 
recent climate change in high-
mountain Asia
Akiko Sakai & Koji Fujita   

Recent studies of Asian glaciers have shown that glaciers in eastern Karakoram and West Kunlun have 
been slightly gaining mass while those in nearby Jammu Kashmir and Himalayas are losing mass, at 
rates of more than 0.5 m w.e.yr−1 and about 0.3 m w.e.yr−1, respectively. Two possible explanations 
have been proposed for this difference in glacier behaviour: spatial heterogeneity in climate change 
(climatic forcing) or differing glacier responses to climate change (glacier response). However, neither 
explanation has strong supporting evidence. Here, we examine the glacial response by calculating 
the mass-balance sensitivity to temperature change in high-mountain Asia. In support of the glacier-
response explanation, we find a strong correlation between observed glacier surface-elevation changes 
and mass-balance sensitivity of glaciers. The high coefficient of determination (R2 = 0.61) suggests that 
spatially heterogeneous mass-balance sensitivity has more explanatory power than regionally different 
climate change for the recent contrasting glacier fluctuations in the high mountain Asia.

In recent years, shrinking glaciers have contributed to about 30% of global sea level rise1. Particularly in Asia, 
water demand exceeds supply due to rapid population growth, with glacier meltwater being a crucial water 
resource. Recent studies1–5 using altimetry and repeat DEMs demonstrated that glaciers in the Himalayas and 
Hengduan Shan are losing mass, whereas glaciers in the Karakoram and West Kunlun are slightly gaining mass 
(Fig. 1a and b). The growth of the latter glaciers, called the ‘Karakoram anomaly’6, has been attributed to cool-
ing summer temperatures and increasing winter precipitation7,8. Similarly, in the nearby Tibetan Plateau, a 
high-resolution meteorological dataset provided additional evidence for mid-latitude Westerlies control on gla-
cier mass balance9. However, the effect of such a ‘spatial climate heterogeneity’ explanation has not been compre-
hensively quantified over the entire high mountain Asia (HMA) region, leaving the possibility that much of the 
anomaly may be due to different glacier responses to similar climatic variations10.

In the Karakoram and Himalayas, debris cover on glaciers produces a spatial variation in glacier fluctuations11. 
Moreover, the sensitivity of a glacier to changing climate depends on the glacier’s present environment, specif-
ically, the environmental control on the heat and mass balances of glaciers12–17. For instance, glaciers in an arid 
environment require relatively colder conditions and tend to be less sensitive to temperature change than those in 
a warm and humid climate12–15. In addition, the seasonality of precipitation, which varies widely over the HMA 
region, will affect the mass-balance sensitivity of glaciers16–20. These studies suggest that glaciers can undergo 
different mass changes even under uniform climate change.

Despite these localized studies7,21,22, no large-scale analysis has explained the heterogeneous changes in Asian 
glaciers observed with remotely sensed data1–5. To understand the mechanism for simultaneous mass losses in 
the Himalayas and Hengduan Shan with slight mass gains in the Karakoram and West Kunlun, we calculated 
mass-balance sensitivity to air temperature (MBS) using the Glacier Area Mapping for Discharge from the Asian 
Mountains (GAMDAM) glacier inventory23 to evaluate the glacier response. Further, we examined the spatial 
distribution of trends of climate change using reanalysis data sets (see Methods) to evaluate climatic forcing. The 
results were compared with two measures of trends in elevation change (TEC)1,2, which is expressed as Δh/Δt 
in Eq. (1) in Methods. The MBS calculation also incorporated an energy- and mass-balance model17 that used 
optimized precipitation for each region as input19 (see Methods).

Results
The resulting MBS distribution (Fig. 1c) is similar to the distribution of TECs obtained from remotely sensed 
laser altimetry observations of glacier surfaces (Fig. 1a and b). To quantify the correlation between MBS and 
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Figure 1.  Trends in elevation change (TECs) and mass-balance sensitivity to air temperature change over high-
mountain Asia (HMA). (a) TECs for glaciers along the Pamir-Karakoram-Himalaya for 2003–2008 modified 
from Kääb et al.2. Ref.2 is licensed under a Creative Commons Attribution 3.0 Unported License (https://
creativecommons.org/licenses/by/3.0/). (b) TECs for glaciers in HMA for 2003–20091 modified from Gardner 
et al., Science 340: 6134 (2013). Reprinted with permission from AAAS. Black square indicates data with high 
overlapping ratios (>0.8, see Methods). (c) Calculated mass-balance sensitivity (MBS) to temperature change. 
TEC values were calculated from ICESat and SRTM data. Original TEC data from ref.1 is the spatial average of a 
minimum of 50 TEC observations within a 50-km radius. All data are on a 1° grid, each point is the average over 
2° cells (see Methods). These figures were created using The Generic Mapping Tools (http://gmt.soest.hawaii.
edu/), Version 5.1.0.30 and were edited using Adobe Illustrator CS6 Version 16.0.0.

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
http://gmt.soest.hawaii.edu/
http://gmt.soest.hawaii.edu/


www.nature.com/scientificreports/

3SCiENtifiC REPOrtS | 7: 13717  | DOI:10.1038/s41598-017-14256-5

TECs, we compare each value in Fig. 1a–c covering a 1° grid (each value is the average over the surrounding 
2° × 2° region) in the scatter plot (Fig. 2, Table S1). From the first set of data2 (Fig. 1a), the coefficient of determi-
nation for the regression line is high (R2 = 0.61), suggesting that over 60% of the spatial variance in glacier mass 
balance is due to the spatially differentiated glacier response to temperature change. As a check, we also compared 
the relationship with the TEC dataset over a wider region from ref.1 (Fig. 1b) for two cases: limited to the same 
domain as in ref.2 and the entirety of HMA; we obtained lower, though consistent, correlations (R2 = 0.17 for the 
ref.2 domain and R2 = 0.19 for HMA). In particular, TECs from ref.1 at high MBS exhibit less change than those 
from ref.2, and have second order convex-downward regression curves (Fig. 2).

Discussion
Optimized precipitation at the equilibrium line altitude (ELA), which is required to calculate MBS, was estimated 
using reanalysis datasets and an assumption that median glacier elevation is equal to the ELA, i.e. the accumula-
tion area ratio (AAR) is 0.5. Actual glaciers have fluctuating masses, and therefore, the ELA does not always cor-
respond to the median elevation. Shrinking glaciers tend to have less AAR, and the actual ELA should be higher 
than the median elevation. Therefore, the optimized precipitation would be overestimated over regions with 
shrinking glaciers. However, the discharge calculated using optimized precipitation performed well and had less 
bias compared to observed discharge in the HMA24, suggesting that optimized precipitation is close to actual pre-
cipitation in glacier areas. We calculate errors in the MBS, which can be caused by uncertainty of air temperature 
and shortwave radiation in the reanalysis datasets. The uncertainties of air temperature (0.9 °C) and shortwave 
radiation (102 W m−2), which were obtained as root mean square errors (RMSEs) against in-situ observational 
data19, result in RMSEs of the MBS ranging 200–260 m w.e. °C−1 (Fig. S1). The errors due to shortwave radiation 
increase with more negative MBS while those due to air temperature seem to have no trend. Uncertainty in the 
ELA assumption, which was evaluated to be 71 m19, is equivalent to 0.43 °C with a temperature lapse rate of 6.0 °C 
km−1; roughly half of the RMSE of air temperature.

The lower correlation between MBS and TEC from ref.1 for the entire HMA, and the largely different TECs 
at high MBS likely arise from different glacier extents in the inventories used. The TEC study of ref.1 aimed to 
estimate glacier mass change in the HMA in addition to worldwide, excluding the Greenland and Antarctic ice 
sheets. Hence, they analysed TECs using version 2.0 of the Randolph Glacier Inventory (RGI2.0)25, which has 
some seasonal snowcover mistakenly catalogued as glaciers23. In comparison, the TEC study of ref.2 used the 
more carefully selected ICESat footprints for glacier surfaces. Therefore, we calculated overlapping ratios between 
glacier areas in the RGI2.0 and GAMDAM glacier inventory to total RGI2.0 for each grid cell (see Methods and 
Fig. 1b and S2). The TEC data from ref.1 were screened based on high overlapping ratios; only TEC data hav-
ing high probability of ICESat footprints on glaciers were selected. We obtained a relatively higher coefficient 
(R2 = 0.42) between MBS and TECs using a high overlapping ratio threshold, ratios >0.8 were selected (Fig. 2). 
Selected data from ref.1 are located in the ref.2 domain and in the Tien Shan and Tibetan Plateau. This suggests 

Figure 2.  Relationship between the sensitivity of mass balance to temperature change and changes in TECs for 
glaciers1,2. Vertical error bars indicate the standard error calculated in ref.2, horizontal error bars indicate the 
standard deviation calculated from averaging each 0.5° grid point in the MBS calculation over a 2° area. There 
are three different TECs: Kääb et al.2, Gardner et al.1 with high overlapping ratios (>0.8), and Gardner et al.1 for 
all of HMA. Equations for regression lines and statistics are summarized in Table S1.
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that the high correlation between glacier mass changes (TECs) and glacier mass balance sensitivity to temperature 
(MBS) might apply to the whole HMA in addition to the domain defined in ref.2.

Other differences between these datasets include different methods for assembling data; ref.2 aggregated each 
data in 1° grids cell while ref.1 aggregated at erratic points covering a 50 km radius. In addition, each point data 
in Fig. 2 from refs1,2 have slightly different TEC coverages in ref.1. Furthermore, TECs were derived only from 
autumn ICESat campaigns in ref.2 but from both autumn and winter campaigns in ref.1.

Apart from uncertainties in MBS and TECs, the coefficient of determination with TECs from ref.2 predicts 
that 61% of the spatial difference in glacier behaviour is due to different MBS, i.e. glacier responses. Furthermore, 
trends in summer temperature and annual precipitation, which were analysed in terms of climatic forcing, have 
lower determination coefficients with TECs throughout the calculated period (1979–2007, Fig. S3). The maxi-
mum determination coefficients are found for the trends from 1993 to 2007 for summer temperature (R2 = 0.32) 
and from 1997 to 2007 for annual precipitation (R2 = 0.20); the distributions of trends (Fig. S4) are significantly 
different from those of MBS (Fig. 1c). Furthermore, periods exhibiting high correlations are different between 
the datasets from refs1,2 for trends in both summer temperature and annual precipitation. This suggests that the 
spatial heterogeneity of climate change is not a major contributor to the spatial heterogeneity in glacier mass 
change. TECs were obtained from 2003–2008 data2, and the highest correlations between TECs and trends in 
summer temperature and annual precipitation are found between the 1990s and 2007 suggesting temporal gaps 
between climate forcing and TECs. We find no significant correlation between TECs and trends in temperature 
or precipitation during the TEC analysis period. There might have been step-like fluctuations in temperature and/
or precipitation before 2003, and then glaciers have responded with some delay.

We classified the MBS-TEC scatter plot (Fig. 2) into 10 sub-regions following ref.2, as shown in Fig. S5. In 
Figs 2 and S5b, variability in TEC (vertical variability in the figure) with the same order of MBS could imply a local 
variability in climatic forcing. For instance, glaciers in East Nyainquentanglha Shan have dominantly large abso-
lute MBS and TEC values compared to other regions. East Nyainquentanglha Shan receives high precipitation26, 
and thus, the error in MBS might be large, as described previously. The difference in TECs between Karakoram 
and West Nepal can be explained with the difference in MBS (Fig. S5b). However, MBS values for the Everest 
region in Nepal, Pamir, and Hindu Kush are similar to those in Karakoram but the absolute values of TECs in the 
former regions are clearly greater than those in the latter. This difference may be due to the Karakoram glaciers 
having a relatively less negative mass change under favourable climate forcing that maintains the glaciers, such as 
cooling summer temperatures and/or increasing winter precipitation7,8. Glaciers in the former regions show rel-
atively rapid mass loss due to warming temperatures and/or decreasing summer precipitation27. The ‘Karakoram 
anomaly’ has drawn attention in the recent decade because glaciers in the Karakoram Range do not appear to 
follow general global warming trends. The MBS-TEC plot (Fig. S5b), however, shows that the Karakoram glaciers 
are not outliers. Therefore, we conclude that the Karakoram glaciers are not behaving anomalously; they have an 
insensitive MBS, and thus change their mass slightly due to local climatic forcing. Glaciers in the West Kunlun 
Shan-Tarim region also have less negative MBS values while their TECs are relatively less negative, even positive, 
compared to those in other regions with similar MBS values (e. g. the Everest region, East Pamir, and north-east 
margin of Spiti Lahaul). These results suggest that cooling temperatures and/or increasing precipitation might 
contribute to the slight mass gain in the West Kunlun Shan-Tarim region.

Our multiple regression analysis reveals that the variance in MBS can be reduced by 69% with three explan-
atory variables: summer temperature, annual range of monthly temperature (temperature range), and ratio of 
summer precipitation (June-July-August) to annual (termed the summer precipitation ratio) (Table S2). Figure S6 
and the determination coefficient with MBS (R2, Table S2) clearly show the impact of each explanatory variable 
on MBS values. Summer temperature shows a relatively simple and higher correlation with MBS (Fig. S6b) while 
the summer precipitation ratio has a largely varying relationship with MBS (Fig. S6c). In Fig. S6c, winter accumu-
lation type glaciers (summer precipitation ratio <50%) have no strong sensitivity (MBS) while summer accumu-
lation type glaciers (summer precipitation ratio >50%) have large variations in MBS. This difference is likely due 
to summer accumulation type glaciers having large variability in summer temperature (Fig. 3d), which has the 
strongest impact on MBS. Figure 3a–c show the area of each explanatory factor that corresponds to weaker (less 
negative) MBS; the relationships between MBS and explanatory factors are depicted in Fig. S6. Figure 3d shows 
that these overlapping areas with weak MBS tend to coincide with regions with small TEC, such as Karakoram 
and West Kunlun Shan (Fig. 1a and b). Conversely, regions with little or no overlap between the areas of weak 
MBS tend to show larger TEC, such as the Hengduan Shan, Bhutan, and western Nepal Himalayas (Fig. 3d). We 
conclude that climatic settings represented by the three factors, summer temperature, temperature range, and 
summer precipitation ratio, are the dominant control on heterogeneous mass balance sensitivity (MBS) and, 
consequently, the spatially contrasting mass change in Asian glaciers.

It should be noted that the MBS and multiple regression analyses performed in this study depend on quality 
of the reanalysis datasets. In this regard, the factors controlling mass-balance sensitivity to temperature (Table S2) 
also have crucial implications for projections of glacier mass change. Unrealistic seasonal patterns of air temper-
ature and precipitation used for projected glacier mass changes would, for instance, lead to erroneous estimated 
changes even given accurate annual averages. In HMA, predicting the variability in monsoon extent will be a 
key factor in projecting glacier mass changes because changes in monsoon extent could alter the distributions of 
seasonal patterns of air temperature and precipitation.

Methods
Glacier response and climatic response in the calculation of glacier mass change.  Water-
equivalent mass change of glaciers can be expressed using elevation changes and glacier sensitivity as follows.
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where, M, t, S, ρ, h, b, T, and P are glacier mass, time, glacier area, density of snow or ice, glacier elevation, specific 
mass balance, temperature, and precipitation, respectively. db/dt and db/dP in eq. (1) indicate mass balance sen-
sitivity to temperature (MBS) and precipitation, respectively, which are expressed as glacier responses to climate 
change. The spatial distribution of ΔT and ΔP are expressed as climate change.

In this study, we compare Δ Δh t/  (TEC in units of m a−1) reported in refs1,2, and db/dT (MBS in units of m w.e. 
°C−1) in the eq. (1), as shown in Fig. 2.

Glacier ice is generally exposed at lower part of the glacier, while the upper glacier area is covered with accu-
mulated snow. In the TEC analysis, we cannot obtain water-equivalent mass changes but trends in elevation 
changes. In eq. (1) there is some uncertainty in the density of snow or ice to estimate ΔM. ref.2 included the 
uncertainty in ice or snow density in the TEC error (±0.02 m a−1) by taking surface conditions (ice or snow) into 
account.

Calculation of mass-balance sensitivity to temperature (MBS).  In the HMA, the Asian Precipitation 
Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE28) dataset was the most 
appropriate for precipitation29. However, the data has a particular bias at high altitude19 because the data was 
generated based on gauge data taken at primarily low altitude. We therefore optimized the precipitation amount 
after referencing the energy- and mass-balance condition on the glaciers. Previous studies12,13 established the rela-
tionship between summer mean air temperature and annual precipitation at the ELA based on observational data 
for glaciers worldwide; they suggested that there are quadric12 or power law13 relationships between these mete-
orological elements. For glaciers in HMA, although few glaciers are available, median elevations correspond well 

Figure 3.  Distributions and boundaries of explanatory variables for multi-regression analysis and area 
boundaries for each explanatory variable with a weaker MBS. (a) The area with summer temperatures <0 °C 
is encompassed with a light blue line. (b) The areas with an annual range in monthly temperature >20 °C is 
encompassed with an orange line. (c) The area with a summer precipitation ratio of <50% is encompassed 
with a purple line. (d) MBS distribution showing overlapping areas of lower summer temperature (<0 °C), 
higher temperature ranges (>20 °C) and lower summer precipitation ratio (<50%) with a black dashed line. 
a-c are depicted based on a 0.5° grid cell. Each threshold for explanatory variables is provided in Fig. S6, which 
indicates that each threshold divides the MBS values such that half are less negative (weaker) and half are more 
negative (stronger). These figures were created using The Generic Mapping Tools (http://gmt.soest.hawaii.edu/), 
Version 5.1.0.30 and were edited using Adobe Illustrator CS6 Version 16.0.0.
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to observed ELA19. Furthermore, it has been confirmed that free atmosphere air temperature in the ERA-Interim 
global atmospheric reanalysis dataset30 correspond well to observed temperature at/around glaciers in HMA 
(root mean square error = 0.9 °C)19. We calculated glacier-area weighted average for median elevations in each 
0.5° grid cell, and calculated the free atmosphere air temperature from the ERA-Interim30 at the median elevation. 
To obtain precipitation data on glaciers, we used an energy and mass balance model16.

Glacier mass balance (B) can be calculated as:

= − + +B C Q l E R/ (2)a M m V F

where Ca, QM/lm, EV, and RF are accumulation, melt water, evaporation, and refreezing, respectively. QM, and lm 
are heat for ice melt and latent heat for melting ice. Ca is determined along with air temperature (snow or rain).

Heat for glacier melting (QM) can be calculated using air temperature, relative humidity, wind speed, and solar 
radiation as:

α σ= − + − + + +Q R R T Q E l Q(1 ) (3)M S L S S V e G
4

where α, RS, RL, σ, TS, QS, EVle, le, and QG are surface albedo, downward shortwave radiation, downward longwave 
radiation, the Stefan–Boltzmann constant, surface temperature in Kelvin, sensible heat flux, latent heat flux, latent 
heat for evaporation of water or ice, and conductive heat flux into glacier ice, respectively.

To calculate optimized precipitation at ELA (median elevation) (Popt), we assume that mass balance from 1979 
to 2007 should be equal to 0 by adjusting the APHRODITE precipitation data as:

=P A P (4)opt P AP

where AP is an adjusting ratio for APHRODITE precipitation, which is obtained differently in each grid cell. PAP, 
Popt, and summer mean temperatures at the averaged median elevation are plotted in Fig. S7. MBS is the mass 
balance change per one degree increase in air temperature at the ELA, which is calculated after changing only air 
temperature ± 0.5 °C from the equilibrium condition:

=
+ Δ − − Δ

Δ
B T T B T T

T
MBS ( /2) ( /2)

(5)
a a

where B  is the average of annual mass balances for the period 1979–2007, and ΔT is 1 °C.
APHRODITE precipitation data (PAP)28 were plotted with annual precipitation in Fig. S7. The relationship 

shows that APHRODITE precipitation data has large variability, and there is no clear relationship between tem-
perature and annual APHRODITE precipitation data at the ELA for Asian glaciers. We cannot obtain presumable 
MBS without bias correcting the APHRODITE precipitation data, because suitable precipitation and temperature 
data are required to estimate precise MBS14. The original APHRODITE precipitation (PAP) has less variability 
than the optimized precipitation (Popt), and no clear relation is found between summer mean air temperature and 
annual precipitation. On the other hand, the optimized precipitation shows large variability and its fitting curve 
becomes very close to a previously proposed approximation12. These results suggest that we can obtain plausible 
datasets for temperature and precipitation at the ELA, and therefore calculate reasonable MBS values.

Uncertainty of the ERA-Interim dataset, which could cause errors in MBS was obtained as root mean square 
errors of air temperature (0.9 °C) and shortwave radiation (102 W m−2) against in-situ observational data19. We 
first calculate optimized precipitation by changing air temperature or shortwave radiation by each RMSE, and 
then obtained each MBS (Fig. S1).

Trends in elevation change.  TECs (trends in elevation change) were analysed using ICESat data and the 
February 2000 SRTM (Shuttle Radar Topography Mission) DEM. The ICESat footprints were classified into gla-
cier and non-glacier manually using Landsat images in Kääb et al.2, and RGI ver. 2.025 in Gardner et al.1 TECs 
were then estimated at every 1° grid point (each value averaged over the surrounding 2° area) by fitting a robust 
linear trend to the time series of elevation differences between the SRTM DEM and individual ICESat footprint 
elevations.

To compare TECs and MBS, we calculated the area-weighted average MBS at each 1° grid covering the 2° 
grid-averaged glacier. TECs from Gardner et al.1, which were sorted at each arbitrary point covering 50 km in 
radius, were also aggregated at each 1° grid covering the 2° grid-averaged glacier.

Overlapping area between the RGI2.0 and GAMDAM glacier inventories.  The Randolph Glacier 
Inventory ver. 2.0 (RGI2.0) includes non-glacier area because source satellite images have seasonal snow cover. 
Recently, a glacier inventory covering the HMA, termed the GAMDAM glacier inventory (GGI), has been pub-
lished23. Satellite images used to delineate glacier boundaries were carefully selected to avoid seasonal snow cover, 
and glacier areas were extracted manually after concurrently verifying with high resolution Google Earth images. 
Here we used the GAMDAM glacier inventory as a reference inventory, and calculated the overlapping ratio (Ro) 
at each 0.5° grid cell to evaluate RGI2.0 as follows:

=R S
S (6)

o
o

rgi

where So and Srgi are overlapping area between RGI2.0 and GGI and the glacier area of RGI2.0, respectively. The 
overlapping ratio indicates a probability that an ICESat footprint coincides with a glacier area in GGI (Fig. S2).
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Trends in climate forcing.  To investigate trends in climate forcing, we conducted trend analyses of summer 
(June-July-August) temperature and annual precipitation using a reanalysis data set (ERA-Interim30) and gridded 
precipitation data (APHRODITE28). First, we calculated annual and summer data for each 0.5° grid, and then 
aggregated those data into each 1° covering 2° grid cell, weighted by glacier area. We further applied Sen’s trend to 
the annual data for each 1° grid cell from various starting years until 2007.

Multiple regression analysis for mass-balance sensitivity to temperature.  For the multiple 
regression analysis, we assumed summer temperature, annual precipitation, temperature range, summer pre-
cipitation ratio, and summer solar radiation at ELA as explanatory variables for MBS, as described in previous 
studies10,12–19, and prepared those data for each 0.5° grid cell. More details are provided in the Supplementary 
Materials (Table S2).

Materials availability.  All data needed to evaluate the conclusions in the paper are present in the paper and/
or the Supplementary Materials. Additional data related to this paper may be requested from the authors.
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Figures: 
 

 
 
Fig. S1: Uncertainties of MBS. Relation between the control MBS and MBSs 
calculated by changing each RMSE of air temperature and shortwave radiation.  
 



 
 
 
Fig. S2: Distribution of overlapping ratio, Ro. High overlapping ratios (> 0.8) 

framed with black lines indicate the grid cells for selected TEC data in Fig. 1b 

from Gardner. These figures were created using ‘Generic Mapping Tools' 

(http://gmt.soest.hawaii.edu/), Version 5.1.0. and were edited using Adobe 

Illustrator CS6 Version 16.0.0. 



  

 
 
Fig. S3: Correlation coefficient (r) and coefficient of determination (R2) of linear 

regression between TECs (Kääb et al.2 and Gardner et al.1) and trends in 

summer air temperature and annual precipitation. The trends were calculated 

from each starting year to a fixed end year of 2007. Horizontal axes show 

starting years for trends until 2007. R2 are indicated only when the significance 

levels (p) of correlation coefficients (r) are smaller than 5%, which are shown 

enclosed with dashed boxes. 

 



 
 
Fig. S4: Trends in a. summer temperature from 1993 to 2007 and b. annual 
precipitation from 1997 to 2007. These two periods are those with the highest 
coefficients of determination (R2) with TEC from Kääb et al2. Large circles 
denote statistically significant trends estimated with the Mann-Kendall rank 
statistic and a significant level of 5%, while small circles have no statistically 
significant trends. These figures were created using 'The Generic Mapping 
Tools' (http://gmt.soest.hawaii.edu/), Version 5.1.0. and were edited using 
Adobe Illustrator CS6 Version 16.0.0. 
 



 
 
Fig. S5: MBS for 10 sub-regions. a: Distribution of MBS for 10 sub-regions, 
which are divided from the domains in Kääb et al.2. b: Relationship between the 
MBS and TEC2 coloured by sub-regions depicted in a. The regression line is the 
same as that shown in Fig. 2. These figures were created using 'The Generic 
Mapping Tools' (http://gmt.soest.hawaii.edu/), Version 5.1.0. and were edited 
using Adobe Illustrator CS6 Version 16.0.0. 



 
 

 
 
Fig. S6: Relationship between MBS and explanatory factors, a. summer 

temperature, b. annual range in monthly temperature (temperature range), and c. 
summer precipitation ratio. Dashed vertical lines indicate the threshold values 

used in Fig. 3. 

 



 
 

Fig. S7: Relationship between summer June-July-August (JJA) mean air 

temperature and annual precipitation at average median elevations. Annual 

precipitation from original APHRODITE data are averaged for the period 

1979-2007 (grey crosses) and optimized in this study. Fitting curves are plotted 

with colours corresponding to the original and optimized data. The black dashed 

curve is from ref. 12. 



Tables: 

 

Table S1 Statistical summary of fitting relationships between MBS and TECs. 

TECs are based on Kääb et al. (2), Gardner et al. (1) for all of high-mountain 

Asia (HMA), and Gardner et al. (1) with high overlapping ratios. n, r, and p are 

sample number, correlation coefficient, and significant level, respectively. 

 
Data source for 
TECs 

n r p Equation of fitting curve and 
determination coefficient (R2) 
(x = MBS, y =TECs) 

Kääb et al.2 81 0.76 < 0.001 y = –0.595x2 + 0.146x – 0.110 
(R2 = 0.61) 

Gardner et al.1 for all 
of HMA 

277 0.41 < 0.001 y = 0.805x2 + 1.727x – 0.294 
(R2 = 0.19) 

Gardner et al.1 with 
high overlapping 
ratios (> 0.8) 

25 0.61 < 0.005 y = 1.414x2 + 2.382x + 0.396 
(R² = 0.43) 

 
 



Table S2 Summary of multi-regression analysis on MBS for each 0.5º grid in the 

two cases, four and three explanatory variables. First, we assumed five 

explanatory variables; summer temperature (St), annual precipitation, annual 

range of monthly air temperature (Tr), summer precipitation ratio (Spr), and 

summer solar radiation (Ss) for MBS. However, the annual precipitation is highly 

correlated with summer temperature (r = 0.77) so we exclude the annual 

precipitation to avoid multicollinearity. The t value is the ratio of the sample 

regression coefficient to its standard error, and a larger absolute value indicates 

a stronger correlation with MBS. The p value indicates significant level, where 

values of 0.05 indicate a 95% probability that the variable has some effect. 

 Determination 
coefficient (R2) 

with MBS 

Four explanatory 
variables 

Three explanatory 
variables 

t p t p 

St (ºC) 0.58 –27.90  < 0.001 –33.74  < 0.001 

Tr (ºC) 0.15 5.19  < 0.001 12.49  < 0.001 

Spr (%) 0.01 –4.63  < 0.001 –6.23  < 0.001 

Ss (W m–2) 0.30 3.49  < 0.05 - - 
Determination 
coefficient (R2) 

 0.698 0.692 

Multiple 
regression 

equation for 
MBS 

(m w.e. yr–1) 

 
MBS= –0.121St + 

0.031Tr – 0.00262Spr + 
0.00125Ss –1.40 

MBS= –0.129St + 
0.0477Tr –0.00332Spr 

–1.37 
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