
1.  Introduction
Chlorine (Cl) in polar ice cores can provide information about past SSA abundance since the main source 
of ice-core Cl is from the emission and transport of sea-salt-aerosol (SSA). Reactive gaseous chlorine  
(Cly = BrCl + HCl + Cl + ClO + HOCl + ClNO3 + ClNO2 + ClOO + OClO + 2 ∙ Cl2 + 2 ∙ Cl2O2 + ICl) 

Abstract  Tropospheric reactive gaseous chlorine (Cly) impacts the atmosphere's oxidation capacity 
with implications for chemically reduced gases such as methane. Here we use Greenland ice-core records 
of chlorine, sodium, and acidity, and global model simulations to show how tropospheric Cly has been 
impacted by anthropogenic emissions since the 1940s. We show that anthropogenic contribution of 
nonsea-salt chlorine significantly influenced total chlorine and its trends after the 1940s. The modeled 
regional 170% Cly increase from preindustrial to the 1970s was driven by acid displacement from sea-salt-
aerosol, direct emission of hydrochloric acid (HCl) from combustion, and chemical reactions driven by 
anthropogenic nitrogen oxide (NOx) emissions. Since the 1970s, the modeled 6% Cly decrease was caused 
mainly by reduced anthropogenic HCl emissions from air pollution mitigation policies. Our findings 
suggest that anthropogenic emissions of acidic gases and their emission control strategies have substantial 
impacts on Cly with implications for tropospheric oxidants, methane, and mercury.

Plain Language Summary  Greenland ice cores preserve information from past atmospheres 
and provide information on how human activities have changed the composition of the atmosphere. 
While ice-core chlorine mainly originates from deposited sea-salt particles in the air, we found that 
emissions from human activities also influence ice-core chlorine. Using six Greenland ice cores and 
global model simulations, we show that the observed increasing trend in nonsea-salt chlorine during 
the 1940s–1970s was caused by enhanced human emissions of acidic gases and the resulting chemical 
reactions involving atmospheric sea-salt particles, and the observed decrease after the 1970s is largely 
attributed to air pollution control strategies that are widely applied in North America and Europe.
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Key Points:
•	 �Greenland ice-core records showed 

nonsea-salt chlorine increased from 
the 1940s to 1970s, and decreased 
leveled off afterward

•	 �Historical simulations by a global 
model qualitatively capture 
the observed trends when 
only considering changes in 
anthropogenic emissions

•	 �Modeled trends are driven by 
anthropogenic emissions of sulfur 
dioxide, nitrogen oxides, and coal 
combustion-emitted hydrochloric 
acid
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from anthropogenic emissions, mainly in the form HCl, may also be a significant source of ice-core Cl 
(Legrand et al., 2002; Pasteris et al., 2014). The impact of anthropogenic emissions on tropospheric reactive 
chlorine since the preindustrial has not been quantified. Formation of HCl through acid displacement on 
SSA is thought to be the largest (85%) source of Cly in the troposphere (X. Wang et al., 2019), and is influ-
enced by anthropogenic emissions of acid gas precursors such as sulfur dioxide (SO2) and nitrogen oxides 
(NOx  =  NO  +  NO2). HCl is also emitted directly from combustion, mainly coal (Fu et  al.,  2018; Keene 
et al., 1999; Kolesar et al., 2018; Y. Liu et al., 2018; McCulloch, Aucott, Benkovitz et al., 1999; McCulloch, 
Aucott, Graedel et al., 1999). HCl contributes to acid deposition, causing damage to lakes and ecosystems, 
altering atmospheric acidity (Evans et al.,  2011), and leads to severe haze and fog through cocondensa-
tion on aerosol (Gunthe et al., 2021). Oxidation of HCl and sea-salt chloride (SSACl−) produces more re-
active forms of chlorine species, such as the chlorine radical (Cl•) (Bryukov et al., 2006), nitryl chloride 
(ClNO2) (Finlayson-Pitts et al., 1989; Kercher et al., 2009; Raff et al., 2009), and hypochlorous acid (HOCl) 
(Watson, 1977). Despite the much lower abundance, these highly reactive chlorine species has potentially 
large local influence for ozone (Finlayson-Pitts, 2003; Knipping & Dabdub, 2003), nitrogen oxides (Haskins 
et al., 2019; Thornton et al., 2010), secondary organic aerosol (Choi et al., 2020), methane (Allan et al., 2007; 
Platt et al., 2004), nonmethane hydrocarbons (Aschmann & Atkinson, 1995; Pszenny et al., 2007), and ele-
mental mercury (Donohoue et al., 2005; Horowitz et al., 2017).

Anthropogenic emissions and acid displacement of HCl can lead to enrichment or depletion of Cl relative 
to sodium (Na) compared to their ratio in sea water, denoted as Clexc (Equation 2 in Methods). Legrand 
et al. (2002) calculated ice-core HCl after removing sea-salt and continental chloride from the measured 
total chloride, and attributed the increases in alpine ice cores to enhanced coal combustion and waste incin-
eration in western Europe during 1925–1970. Observations show decreasing trends of non-SSA Cl− deposi-
tion over the past 20–30 years in the US (Haskins et al., 2020) and UK (Evans et al., 2011), suggesting that 
the post-1970s air pollution mitigation policies targeting SO2 and NOx emissions have reduced emissions of 
HCl. At Summit (central Greenland), Legrand et al. (2002) found that Clexc originates mainly from acid dis-
placement of HCl from SSA, which increased by a factor of 2–3 over the twentieth century due to enhanced 
aerosol acidity resulting from growing anthropogenic NOx and SO2 emissions. Greenland ice-core records 
of sulfate and nitrate, the main sinks for NOx and SO2, show increases beginning in the 1900s, peaking in 
the 1970s, followed by a rapid decline in sulfate and a more gradual decline in nitrate (Geng et al., 2014), 
consistent with trends of anthropogenic SO2 and NOx emissions from combustion (Smith et al., 2011).

2.  Methods
2.1.  Ice-Core Records

We present ice-core chlorine, sodium, and acidity records from the six Greenland ice cores (Figure S1). Pre-
cise locations and other information are summarized in Table S1, and details on core extraction and dating 
are described in previous publications (Geng et al., 2014; Iizuka et al., 2018; McConnell et al., 2019; Opel 
et al., 2013; Spolaor et al., 2016). Measurements of ice-core Na and Cl were using either a continuous flow 
analysis with an online ion chromatography system (CFA-IC) with an accuracy of 5% at annual resolution 
(for Summit07) (Geng et al., 2014; Iizuka et al., 2018), or Inductively Coupled Plasma Mass Spectrometry 
(ICP-MS) (McConnell et al., 2014; Spolaor et al., 2016) with an uncertainty of ±10% (for NEEM, NGT_B19, 
Tunu, ACT_11d and Summit10). For NEEM, NGT_B19, Tunu, ACT_11d and Summit10 cores, acidity (H+) 
was measured directly using a flow-through bubbling chamber method described in Pasteris et al. (2012), 
with an error less than 5%. For Summit07 ice core, acidity was calculated based on the ion balance, accord-
ing to Equation 1:

                                                 
2 2 2

3 4 4H Cl NO SO Na NH K Mg Ca� (1)

with concentrations in units of μeq L−1 (Geng et al., 2014). Note that this calculation may underestimate 
snow acidity because it does not consider organic-acid anions (e.g., formate and acetate), which were meas-
ured to be 0.3 ± 0.1 μM at Summit during 1767–1945 (Legrand & Mayewski, 1997).
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To separate the contribution of SSA relative to more reactive forms (e.g., HCl) of Cl, we calculated the chlo-
rine excess (Clexc) relative to what would be expected from SSA alone, which is defined with a sea water Cl/
Na mass ratio (([Cl]/[Na]) sea water) of 1.796 (Riley & Tongudai, 1967) (Equation 2):

                 exc ice core ice coresea water
Cl Cl Cl / Na Na� (2)

ICP-MS measurements may lead to an underestimate of Clexc because it measures both the soluble Na and 
the insoluble Na fraction which may originate from nonsea-salt aerosol (e.g., dust), whereas IC measures 
the soluble Na and a small fraction of leachable Na from dust.

To analyze the relationship between measured species in the ice cores, we adopt the Passing-Bablok (PB) 
regression model (Passing & Bablok, 1983). In contrast to the traditional Ordinary Least Squares regression 
(OLS) which only considers measurement errors on the y-axis variable, PB regression assumes both x-axis 
and y-axis variables contain measurement errors and is insensitive to outliers (e.g., due to volcanic erup-
tions). We use the Pearson's correlation coefficient (r) to show the relationships between species, and r is not 
affected by the choice of the regression model.

2.2.  GEOS-Chem Simulations

To estimate impacts of anthropogenic emissions on tropospheric HCl and reactive chlorine abundances, 
we use a global 3-D chemical transport model GEOS-Chem (version 11-02d, Text  S1) described in Bey 
et al. (2001) with updates described in the supporting information. The model is driven by MERRA-2 assim-
ilated meteorological observations from the Goddard Earth Observing System (GEOS) (Gelaro et al., 2017). 
The model simulates detailed HOx-NOx-VOC-ozone-halogen-aerosol tropospheric chemistry, which in-
cludes SSA (Jaeglé et al., 2011) and tropospheric gas-phase, liquid-phase, and heterogeneous-phase reactive 
chlorine chemistry (X. Wang et al., 2019), and fully coupled stratospheric chemistry (Eastham et al., 2014).

Model simulations are performed using three emission scenarios: preindustrial (PI, year 1750), peak atmos-
pheric acidity (PA, year 1975), and present day (PD, year 2007), as summarized in Text S1 and Table S2. We 
run each simulation for 5 years to equilibrate stratosphere-troposphere exchange, and use only the fifth 
year for analysis. All simulations are conducted at 4° × 5° horizontal resolution and 72 vertical levels up to 
0.01 hPa. We use MERRA-2 meteorological fields of the same year (2007) for all three simulations to isolate 
changes induced by anthropogenic emissions. This configuration will also keep emissions that are depend-
ent on meteorological parameters, such as wind-blown dust, lightning and soil NOx, biogenic VOCs, and 
SSA from the open ocean and sea-ice, constant. Only anthropogenic and biomass-burning emissions are 
allowed to vary between simulations in order to isolate their impacts on tropospheric chlorine.

2.3.  Backward Trajectory Analysis

To determine the source regions of Cly at the six Greenland ice-core sites, we run backward trajectory analy-
sis using the HYSPLIT model (Hybrid Single-Particle Lagrangian Integrated Trajectory) (Stein et al., 2015). 
We calculate the cumulative air mass probability for the 5-day backward trajectories, considering the mod-
eled lifetime of acidic gases (e.g., SO2 and NOx of about 1 day), accumulation-mode aerosol (up to 6 days) 
(Alexander et al., 2005), and gas phase HCl (2.5 days), as well as possible seasonal variations in transport. 
To retrieve the source regions across the ice-core covered time periods, we conduct the backward trajectory 
analysis for 1959–2010, and present the averaged results. Initial altitudes of air masses are at 10, 500, 1,000 
and 1,500 m above ground level (a.g.l.), and the calculation was constrained within 1,500 m a.g.l., which 
was assumed to be the depth of the mixing layer. Daily precipitation from the reanalysis data sets (ERA-40 
and ERA-Interim (Dee et al., 2011; Uppala et al., 2005)) was used for weighting the probability of air masses. 
Considering the proximity of the two Summit cores, and Tunu and NGT_B19, we only conduct the analysis 
for four locations: NEEM, Tunu, ACT_11d, and Summit, and chose a region that covers most of the back-
ward trajectory probabilities as the backward trajectory region (TRJ) (Figure S2).

ZHAI ET AL.

10.1029/2021GL093808

3 of 12



Geophysical Research Letters

3.  Results
3.1.  Ice-Core Observations

Figure 1 shows annual concentrations of Na, Cl, Clexc, and acidity from six Greenland ice cores (Figure S1). 
Positive mean Clexc values (1.0–5.9 ng g−1) over the reported time periods (1750 or 1776‒end of the records) 
in all records are consistent with negligible loss of HCl from the snowpack after atmospheric deposition 
where snow accumulation rates are greater than 40 kg m−2 yr−1 (Röthlisberger, 2003) (Table S1). Clexc rep-
resents a higher fraction of total Cl in lower latitude (medians of 9%–49% over the full records) compared 
to higher latitude ice cores (medians of 8%–17% over the full records) (Figure S3) likely due to closer prox-
imity to North American (NA) and Western European (WE) anthropogenic source regions, as determined 
by back trajectory analysis (Figure S2). For all ice cores, Clexc records show no trends before 1940, followed 
by a twofold to sevenfold increase until ∼1975. After 1975, Clexc either declined (Summit07, ACT_11d) or 
leveled off (Summit10, Tunu, NEEM, and NGT_B19). ice-core acidity is similar to Clexc, with no long-term 
trends before the 1900s (lower latitude cores) or 1940s (higher latitude cores), an increase from 1940 to 1975, 
followed by a leveling off or decrease. Acidity trends are consistent with previous Greenland ice-core sulfate 
records (Geng et al., 2014) and trends in anthropogenic sulfur emissions in NA and WE (Smith et al., 2011).

Figure 2 and Table S3 show relationships between annual ice-core Na and Cl, and between ice-core acid-
ity and Clexc. Na and Cl were strongly correlated in all ice cores, with a stronger relationship in higher 
latitude (r  =  0.86–0.94) compared to lower latitude (r  =  0.49–0.80) cores. Continued strong correlation 
after the 1940s (Table S3) suggests that SSA was the dominant source of chlorine throughout the records. 
Correlations between acidity and Clexc were stronger in post-1940s (r = 0.33–0.72), compared to pre-1940s 
(r = −0.02–0.43) when acidity was relatively low (Table S3). Lower latitude cores show a higher correlation 
(r = 0.67–0.72) post-1940s than higher latitude cores (r = 0.33–0.38) due to their closer proximity to anthro-
pogenic source regions.
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Figure 1.  Annual concentrations of Na, Cl, Clexc, and acidity of the six ice cores in Greenland. (a) Records from higher latitude Greenland ice cores Tunu 
(black), NGT_B19 (blue), and NEEM (red). (b) Records from lower latitude Greenland ice cores Summit10 (black), Summit07 (blue), and ACT_11d (red). 
Gray, light blue, and pink lines represent the annual-mean concentrations. Black, blue and red lines represent the 9-years running average concentrations after 
removing the outliers that are outside of 1.5 × IQR (interquartile range). Green stars mark volcanic eruption years (Text S2). Ion concentrations are reported for 
Summit07, whereas elemental concentrations are reported for other ice cores. Vertical gray dotted lines mark the years 1850, 1940, and 1975.
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3.2.  Model-Observation Comparisons

Figure 3 shows the 30°–90°N regional distribution of modeled annual-mean surface Cly in PI, PA, and PD, 
where the model considers past changes in anthropogenic emissions (Methods, and Text S1). Surface Cly is 
shown because most tropospheric Cly is confined to lower altitudes (2 km) due to the dominance of direct 
surface emissions and near-surface chemistry sources (Figure S4). The highest surface Cly concentrations 
in PA and PD are distributed in continental outflow regions where anthropogenic acids encounter SSACl−, 
leading to acid displacement of HCl. The tropospheric burden of Cly in the 30°–90°N region increased 132% 
from PI to PA and 7% from PA to PD. While surface Cly increases everywhere in the region from PI to PA 
and PI to PD, the trend from PA to PD shows spatial variability that is, consistent with regional trends in 
anthropogenic emissions of SO2 and NOx.

The simulated trends in Cly in the calculated 5-day back trajectory region (TRJ, green dashed region in Fig-
ure 3) are qualitatively consistent with and within the ranges of the observed trends in Greenland ice-core 
Clexc (Figure 4a). On average, the modeled Cly burden in TRJ increased by 170% from PI to PA, and decreased 
by 6% from PA to PD. From PI to PA, ice-core Clexc showed increases ranging from 105% to 631%, with an 
average increase of 335%. Although modeled average trends from PI to PA lie below the 25th percentile of 
observations, the modeled increase in Cly in continental outflow regions of NA (276%) and WE (203%) lie 
within the interquartile range (IQR) of the observations, suggesting that trends in chlorine deposition in 
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Figure 2.  Relationships between annual ice-core (a and b) Na and Cl concentrations, and (c and d) snow acidity and 
Clexc from the six Greenland ice-core records. (a and c) Higher latitude cores including Tunu, NEEM, NGT_B19, (b and 
d) the lower latitude cores including Summit07, Summit10, and ACT_11d. Black circles are the pre-1940 record and 
blue circles represent post-1940 records. Red lines and the equation show the PB regression for the full record. Dashed 
black lines show the relationship between Na and Cl in sea water. r, rpre-1940, and rpost-1940 represent, respectively, the 
Pearson's correlation coefficients for the full records, pre-1940 and post-1940 records, and the range of r values is from 
individual ice cores in the group. Outliers outside the 1.5 × IQR (interquartile range) are removed. All r values are 
significant with p values lower than 0.05.
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inland Greenland may be more influenced by these source regions. From PI to PD, the simulated average 
TRJ Cly increased 153%, similar to the median increase (163%) in the observations, and was within the IQR 
range of the ice-core trends. The average modeled trend (+153%) fell on the lower end of the observed 
range, but again the simulated trends in NA and WE continental outflow regions (223% and 185%, respec-
tively) showed a more robust comparison with the average change in ice-core Clexc (253%). From PA to PD, 
most inland Greenland ice cores showed a decreasing trend in Clexc, with an average decrease of 20%, and a 
median decrease of 41%. The magnitude of the average modeled Cly trends from PA to PD in the TRJ region 
(−6%) was smaller than the average of ice-core observations, but the modeled changes in the NA and WE 
continental source regions (−13%) were more similar to the observations. The range of PA to PD changes 
in the model (−46% to 19%) fell within the range of the ice-core observations (−114% to 102%). The mod-
eled PI-to-PA (210%) and PA-to-PD (−25%) change in Cly at the location of the Col du Dome ice core in the 
French Alps also was qualitatively consistent with ice-core Clexc changes (383% from PI to PA, −71% from 
PA to PD) from Legrand et al. (2002). Model underestimation of the trends may be due in part to uncertain-
ties in anthropogenic HCl emissions (Methods).

3.3.  Anthropogenic Impacts on Reactive Gaseous Chlorine

Simulated trends in Cly reflect trends in HCl, since >94% of the burden and 99% of deposition is of the 
form HCl (Figure S5). The dominant source of HCl in all three-time periods is acid displacement of SSACl−, 
contributing 73%, 47%, and 61% to the total source in PI, PA, and PD, respectively (Figure 4b). Chemical re-
actions that convert Cl* (= Cly − HCl) to HCl is the second largest source (20%, 27%, and 26% in PI, PA, and 
PD, respectively). In PA, the Cl* source is closely followed by direct anthropogenic HCl emissions, which 
contributes 21% of the total source. Other sources are minor (<10%). The increase in HCl from PI to PA in 
the TRJ region (mean of 238%) is driven by increases in direct anthropogenic emissions of HCl (35%), acid 
displacement (29%), and heterogeneous reactions involving Cl* (29%). The 12% decrease in HCl from PA to 
PD is driven by decreases in the direct anthropogenic source of HCl (71%) and in conversion of Cl* to HCl 
(16%), and is partly compensated by a continued increase (15%) in acid displacement.
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Figure 3.  30°–90°N regional distributions of annual-mean surface mixing ratios of Cly in the three-time periods in 
GEOS-Chem (a), and the percentage difference of Cly surface mixing ratio between the three-time periods (b). Gray grid 
lines show 10° latitude and 60° longitude distance. Black crosses mark the ice-core sites. Dashed green lines show the 
back trajectory region (TRJ, 120°W‒30°E, 42°‒90°N) for the six Greenland ice cores based on the 5-day back trajectory 
analysis. The annual-mean tropospheric Cly burdens for 30°–90°N regions are shown on the top-left corners of subplots 
in (a), and the burdens for the TRJ region are shown similarly in (b).
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HCl acid displacement is controlled by thermodynamic equilibrium between gas phase (HCl) and aerosol 
phase (SSACl−). Lower aerosol pH and aerosol water content (AWC) both favor acid displacement of HCl 
(Haskins et al., 2018), but the relationship is nonlinear. At higher pH in PI, the equilibrium is more sensi-
tive to pH than to AWC. At lower pH in PA and PD, AWC becomes more important (Haskins et al., 2018). 
From PI to PA, the mean aerosol pH in TRJ decreased 1.7 pH units, resulting in a large increase in HCl 
displacement despite the increase in AWC (223%) (Figure 4c). From PA to PD, continued increase in HCl 
displacement is driven by lower AWC in the PD relative to the PA. Although accumulation-mode aerosol pH 
increases slightly from PA to PD (0.3 pH units), the equilibrium is less sensitive to aerosol pH at the lower 
pH values during the PA and PD (Haskins et al., 2018) (Figure 4c).

The HCl source from Cl* chemistry originates from reactions between Cl• with hydrocarbons and the in-
cloud reaction between dissolved SO2 and HOCl (Figure S5). Trends in the Cl* source of HCl reflect trends 
in Cl* abundance. The Cl* burden increased by 252% from PI to PA, and decreased by −9% from PA to PD 
in TRJ (Figure 4d). Enhanced formation of ClNO2 (395-fold) from heterogeneous reaction of N2O5 with 
particulate chloride, driven by elevated NOx emissions (Figure S6), dominates the increase in Cl* from PI 
to PA. The decrease in Cl* from PA to PD is caused by the decrease of ClNO2 (−14%) and Cl2 (−32%) from 
PA to PD due to less N2O5 in continental outflow regions (Figure S7) driven by a decrease in NOx emissions 
(Figure S6), consistent with satellite observations (Kim et al., 2006; Konovalov et al., 2010).

Changes in ClNO2 production from PI to PA and PA to PD drive changes in total Cl* abundance and in all 
individual Cl* species except Cl• (Figure S5). Opposite to the Cl* trends, Cl• abundance decreased 27% from 
PI to PA and increased 20% from PA to PD in the TRJ region. These changes are driven by their reactions 
with alkanes producing HCl (Figure S5 and Table S4). Enhanced emissions of alkanes from transportation 
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Figure 4.  Model-observation comparison of non-SSA chlorine and model interpretation of the trends. (a) Comparison of percentage changes in the Clexc 
concentrations from the six Greenland ice cores (blue boxes) and modeled Cly burdens in TRJ (orange boxes) between PI, PA, and PD. ice-core statistics are 
calculated from 1750 to 1760 for PI, 1970–1980 for PA, and the last 10 years of the records for PD. Boxplots show the range of percentage changes, red diamonds 
mark the mean values and red lines represent the medians. Black dots are model grid boxes outside the range of 1.5 IQR. (b) Modeled HCl sources in TRJ for 
PI, PA, and PD. “Direct Anthro.” refers to direct anthropogenic emissions of HCl. “Cl* → HCl” represents the net conversion of Cl* into HCl. “Other” sources 
include the stratosphere to troposphere exchange and transport from outside of TRJ (<7%), biomass burning (<2%), and HCl formed from organochlorines 
(<0.1%). (c) Violin plots for modeled accumulation-mode aerosol pH in TRJ (left panel) and aerosol water content (AWC) in TRJ for PI, PA, and PD. (d) 
Modeled annual-mean tropospheric Cl* burden (in Gg Cl) in TRJ for PI, PA, and PD. “Other” Cl* species include BrCl, Cl, ClO, ClOO, Cl2O2, and ICl.
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and energy extraction (Hoesly et al., 2018) and increasing methane from PI to PA (Murray, 2016) increased 
conversion rate of Cl• to HCl, driving the Cl• decrease. From PA to PD, although methane levels continue 
to increase, anthropogenic emissions of alkanes in NA and WE decrease (Hoesly et al., 2018), resulting in 
an increase in Cl• from PA to PD. Changes in sink reactions of Cl• are driving the conversion of Cl* to HCl, 
which shows an increase from PI to PA and a decrease from PA to PD (Figure 4d).

4.  Conclusions and Implications
This study investigates total and nonsea-salt chlorine (Clexc) trends since preindustrial time using six 
Greenland ice cores and examines the contribution of anthropogenic emissions to these trends using the 
GEOS-Chem model. Observed trends in inland Greenland ice-core Clexc are captured by historical model 
simulations that isolate the impact of changes in anthropogenic emissions while holding meteorology con-
stant. Model results indicate that from PI to PA, the increases in acid displacement of HCl from SSA, direct 
anthropogenic HCl emissions and enhanced Cl* production were responsible for the increasing trend in 
Cly. From PA to PD, acid displacement continued to increase, but was overcompensated by reduced direct 
anthropogenic HCl emissions and chemical conversion of Cl* to HCl. Although direct anthropogenic emis-
sions of HCl represent <21% of the total HCl source, it is required to explain the decreasing trends in Clexc 
observed in ice cores since PA.

Cycling of Cly species can destroy O3 directly through catalytic cycles, and indirectly through reducing NOx 
abundance (X. Wang et al., 2019). Consequently, increases in Cly lead to decreases in OH due to reduction 
in ozone. The implications of Cly for ozone, OH and NOx have been demonstrated previously (X. Wang 
et al.,  2019). This study shows that anthropogenic emissions of HCl, SO2 and NOx have had significant 
impacts on tropospheric Cly abundance (up to +170%), which should be considered in the estimation of 
anthropogenic impacts on changes in tropospheric oxidation capacity.

In addition to the impact of Cly on oxidants such as OH, Cl• serves as an oxidant itself (Sherwen et al., 2016; 
X. Wang et al., 2019), with reactivity 1‒2 orders of magnitude higher than OH in oxidizing alkanes (At-
kinson et al., 2006; Finlayson-Pitts & Pitts, 1999; Ji et al., 2013; Xie et al., 2017; Young et al., 2014). Al-
though a minor sink for methane, reaction with Cl• has a large impact on methane's isotopic composition 
(Strode et al., 2020), which is used to constrain the methane budget in present and past climates (Allan 
et  al.,  2001,  2007; Bock et  al.,  2017; Strode et  al.,  2020; Whiticar & Schaefer,  2007). Our model simula-
tions suggest that anthropogenic emissions alone have changed the global Cl• abundance by up to −16% 
since preindustrial times, which will influence the isotopic composition of methane and potentially the 
isotope-based interpretation of the methane budget.

Data Availability Statement
ice-core data for this research is available at the Arctic Data Center via https://doi.org/10.18739/A2X-
S5JJ1N with Creative Commons Attribution. GEOS-Chem is open software and available on https://doi.
org/10.5281/zenodo.5047976. GEOS-Chem historical simulation output is archived in the University of 
Washington ResearchWorks repository via http://hdl.handle.net/1773/46969.
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Introduction  

This supporting information includes a detailed description of the GEOS-Chem model and the setup of 
the historical simulations (Text S1, Table S2), volcanic years marked in Figure 1(Text S2), additional 
information and analysis of ice cores (Figure S1,S3, Table S1), HYSPLIT model simulated backward 
trajectory probability map (Figure S2), and additional information from GEOS-Chem historical 
simulations on zonal distribution of Cly (Figure S4), cycling of tropospheric Cly analysis (Figure S5), 
surface distribution and trends of NOx emissions, N2O5 mixing ratios, and anthropogenic HCl emissions 
(Figure S6-8). In addition, the details of correlation analysis between snow acidity and Clexc for 
individual ice cores are shown in Table S3, and the sources and sinks of TRJ tropospheric Cl• from the 
historical simulations is shown in Table S4. Snow accumulation rates for the Greenland ice cores are 
shown in Figure S9 and Table S5, and additional discussions on model uncertainties besides 
anthropogenic emissions are in Text S3. 

Text S1. Detailed model description   
The model version used in this study is version 11-02d (available on 

https://github.com/geoschem/geos-chem/tree/v11-02d-prelim, last accessed on 05 April 2021) 
Description of the model’s tropospheric halogen (Cl, Br, and I) chemistry can be found in references 
(Sherwen et al., 2016; X. Wang et al., 2019; Zhu et al., 2019). The model includes both open ocean and 
blowing snow sources of sea-salt aerosol as described in references (Huang & Jaeglé, 2017; Jaeglé et 
al., 2011). Sea-salt Cl− is converted to HCl via acid-displacement by HNO3 and H2SO4 (Jacob et al., 1985) 
and is calculated using the ISORROPIA II thermodynamic equilibrium model (Fountoukis & Nenes, 
2007) for the accumulation-mode aerosol and a modified equilibrium model to account for the mass 
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transfer limitation for the coarse-mode aerosol (X. Wang et al., 2019). Cloud pH is calculated based on 
Moch et al. (2020). Heterogeneous reactions in clouds are limited by cloud entrainment rates as 
described in Holmes et al. (2019). We use the updated rate coefficients from Liu & Abbatt (2020) for 
reactions of HOBr/HOCl and HSO3

−/SO3
2− in the model, which is important for converting more 

reactive forms of halogens (HOBr, HCl) to less reactive species (HBr, HCl) (Chen et al., 2017). 
Sinks of halogen species include dry and wet deposition for both the gases and aerosol. The wet 

deposition scheme in GEOS-Chem is described by H. Liu et al. (2001) for water-soluble aerosols and by 
Amos et al. (2012) for gases. Scavenging of aerosol by snow and cold/mixed precipitation is described 
by references (Q. Wang et al., 2011, 2014). Dry deposition is based on the resistance-in-series scheme 
of Wesely (1989) as implemented by Y. Wang et al. (1998). Aerosol deposition scheme is from Zhang et 
al. (2001). Aerosol deposition to snow/ice is described by Fisher et al. (2011). Sea-salt deposition 
scheme is from Jaeglé et al. (2011). 

The model uses UCX (Eastham et al., 2014) scheme to calculate stratospheric chemistry. Long-
lived ozone-depleting substances (ODSs), such as CFCs, HCFCs, and halons are set with fixed surface 
mixing ratios in the respective years, advected and lost as part of the chemistry mechanism, and their 
concentrations are set to zero in PI simulation. To exclude the contribution from anthropogenic 
emissions for historical simulations (described below), we scale stratospheric Bry concentrations from 
very short-lived substances (CHBr3, CH2Br2, etc.) by 56% following previous studies (Liang et al., 2010; 
Sherwen et al., 2017). 

We use CEDS (Hoesly et al., 2018) and BB4CMIP6 (van Marle et al., 2017) of individual years (1750, 
1975, 2007) for anthropogenic and biomass-burning emissions, respectively. For PD simulation, the 
global anthropogenic emission inventory (CEDS) is superseded by the following regional inventories: 
NEI11v1 from EPA 2014 for the US (Travis et al., 2016), MIX inventory for East Asia (Li et al., 2014), and 
DICE-Africa inventory for Africa (Marais & Wiedinmyer, 2016). Based on emission factors for different 
land types from van Marle et al. (2017), we include the biomass-burning emitted HCl into BB4CMIP6. 
The only available global inventory of anthropogenic HCl is from McCulloch et al. (1999), but it is 
shown to overestimate HCl observations over the US (X. Wang et al., 2019), and is biased high 
compared to current regional emission inventories from the US (US EPA, 2016) and China (Fu et al., 
2018; Y. Liu et al., 2018). HCl and SO2 are co-emitted from combustion sources (mainly coal 
combustion and waste incineration), and the implementation of the flue-gas desulphurization (FGD) 
technologies that were designed to remove SO2 exhaust has been shown to be highly effective in 
removing other acidic gases such as HCl (Haskins et al., 2020; McCulloch et al., 1999). Therefore, we 
implement an anthropogenic HCl emission inventory based on CEDS SO2 emission (Hoesly et al., 2018) 
and assume a HCl:SO2 emission ratio of 0.033 as observed in coal-fired power plant plumes (Lee et al., 
2018). We use this ratio to scale HCl emissions to SO2 emissions from the CEDS working sectors that 
contain most combustion sources. This implementation will reflect not only the increasing HCl 
emissions since the Industrial Revolution, but also the decline of HCl emissions resulting from recent 
emission control strategies. Figure S8 shows the global distribution of anthropogenic HCl emissions 
from the model. There are uncertainties associated with this approach since CEDS sectors do not 
separate combustion and non-combustion emissions and we apply the same scaling factor globally. 
However, the scaling factor is based on observations from coal combustion, which represents the 
majority (40‒80%) of anthropogenic SO2 emissions (Smith et al., 2011). HCl:SO2 emission ratio is also 
subject to changes induced by the application and update of clean coal technologies, as flue gas 
desulphurization may not be equally effective at removing SO2 and HCl (i.e., the HCl:SO2 emissions 
ratio may be different before and after the implementation of air pollution control technologies). 
McCulloch et al. (1999) estimates a global HCl emission of 4.6±4.3Tg Cl from fossil fuel combustion in 
1990, while the HCl emissions based on the fixed HCl:SO2 emission ratio is 2.3Tg Cl in PA (1975), 50% 
less than the mean value in McCulloch et al. (1999). It is possible that our approach represents a lower 
limit of HCl emissions in PA, which could be the cause of the underestimation of PA Cly in the model. 
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Text S2. Volcanic years in Figure 1 
In Figure 1, Green stars mark large and moderate volcanic eruption years based on Cole-Dai et al. 

(2013) and Sigl et al. (2013), and only eruptions with volcanic sulfate deposition flux >10 kg km-2 are 
shown: Pinatubo(Indonesia) in 1991, Katmai (Alaska) in 1912, Krakatoa (Indonesia) in 1883, Makian 
(Indonesia) in 1862, Cosiguina (Nicaragua) in 1835, Babuyan (Philippines) in 1831, Galunggung 
(Indonesia) in 1822, Tambora (Indonesia) in 1815, unknown eruption in 1809, Laki (Iceland) in 1782, 
Hekla (Iceland) in 1766, and unknown eruption in 1761. Note that volcanic signals in polar ice cores 
may last 2�3 years, usually with maximum concentration of volcanic sulfate flux appearing 1 year after 
the eruption.  

Text S3. Model uncertainties analysis 
We acknowledge that the uncertainties causing the discrepancy between model and ice-core 

trends may stem from other factors than anthropogenic emissions. We designed the study to exclude 
impacts of changes in meteorology (which also are a source of uncertainty) to only focus on the 
anthropogenic contribution on the observed Clexc trends.  

The changes in snow accumulation rates may impact ice core concentrations. The water 
equivalent snow accumulation rates from the five Greenland ice cores (excluding Summit07) are 
shown in Fig. S9. We calculated the Sen’s slope of the snow accumulation rates since the preindustrial 
for the five Greenland ice core locations (Table S5). Significant trends exist only in the ACT_11d core, 
and for the post-1940 period at NEEM, but other sites did not show significant trends. Thus, we can 
rule out the impacts of snow accumulation rate changes on the observed consistent trends between 
the different Greenland ice cores. 

Another source of potential model bias is the lack of Cl2 production from snow photochemistry 
on snowpack and ice surfaces (Halfacre et al., 2019; Liao et al., 2014; Custard et al., 2017). However, the 
mechanism of snow Cl2 production remains highly uncertain and is thus difficult to parameterize into 
models. We also expect this source to be minor under the high snow accumulation rates in the 
Greenland region (Röthlisberger, 2003). 

We examined the representativeness of year 2007 meteorology fields for our historical 
simulations. Variations in meteorological fields may impact transport patterns and sea salt emission. 
For transport patterns, we compared the 5-day back trajectory probability from year 2007 (Fig.S10) 
with the averaged back trajectory probability for 1959�2010 (Fig.S2), and found that the source 
regions are quite similar. Thus we are convinced that year 2007 is not special enough to alter the 
transport pattern in Greenland ice core source regions. For sea salt emissions, which are dependent on 
wind speed, sea surface temperatures, and sea ice extent as described in Jaeglé et al. (2011), we 
calculated the annual mean sea salt emissions in 30�90°N from 2006 to 2014 (Fig. S11) in the model. 
For this time period, year 2007 does not stand out in sea salt production either. Therefore, we think 
2007 should be a representative year to use for our study. 
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Figure S1. Locations of the six Greenland ice-core sites used in this study. Different colors distinguish 
higher (purple and blue), and lower latitude (red) ice-core sites.
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Figure S2 5-day back trajectory probability of NEEM, Tunu, ACT_11d, and Summit calculated 
by the HYSPLIT model for the time period 1959-2010. Ice-core sites on each panel are marked 
as black crosses, and dashed black lines indicate the back trajectory region used for chlorine 
budget analysis.  
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Figure S3. Boxplot of Clexc/Cl ratio for the six Greenland ice cores. Red lines represent the 
median values, and circles denote outliers. Statistics refer to the full reported time period for 
each core. 
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Figure S4. Simulated zonal mean mixing ratio of Cly as a function of latitude and altitude for PI 
(1750), PA (1975), and PD (2007). 
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Figure S5. TRJ (longitude 1200W‒300E, latitude 420N‒900N) regional budget and chemical 
cycling of tropospheric chlorine species in GEOS-Chem for PI, PA, and PD. Average regional 
annual mean masses (Gg Cl) and mixing ratios (ppt, in square brackets) are shown in the 
squares with key chlorine species. Arrows show the regional annual mean reaction rates (Gg Cl 
a−1), and the thickness of arrows are proportional to the orders of magnitude of the reaction 
rates. Read 6.1(−2) as 6.1×10−2. Gas phase, heterogeneous, and photolysis chemistry are 
shown in black, purple, and red arrows, respectively, and orange arrows indicate the sources 
and sinks. The dotted box group together the Cly family, and arrows in and out of the box 
represent general sources and sinks of Cly. IONOx = IONO + IONO2. 
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Figure S6. Simulated annual mean distribution of NOx emissions in the 30‒900N region during 
historical time periods (upper panel), and percentage changes between them (lower panel). 
Dashed green lines indicate the TRJ region. 
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Figure S7. Simulated annual mean surface mixing ratio of N2O5 in the 30-900N region during 
historical time periods (upper panel) and percentage changes between them (lower panel). 
Dashed green lines indicate the TRJ region. 
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Figure S8. Simulated global distribution of anthropogenic HCl emissions (kg m−2 s−1) applied 
in this study. Left three panels show the distribution in PI, PA, and PD, right three panels show 
the absolute change between the three time periods. 
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Figure S9 Time series of water-equivalent snow accumulation rate for 5 Greenland ice cores. 
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Figure S10 5-day back trajectory probability of NEEM, Tunu, ACT_11d, and Summit calculated 
by the HYSPLIT model for year 2007. Ice-core sites on each panel are marked as black crosses, 
and dashed black lines indicate the back trajectory region used for chlorine budget analysis.  
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Figure S11 Annual mean sea salt emissions in 30‒90°N from 2006 to 2014. Results are 
generated from offline HEMCO simulations, using meteorological fields for different years from 
MERRA-2. 
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Ice cores Formal Name Latitude Longitude
Elevation 

(m) 
Drilling 

Year 
Length 

(m) 

Recent Snow 
Accum. 

(kg m-2 yr-1) 

Time 
Period 

Previously 
unpublished 

except 

Tunu 
Tunu_2013 78.0 ºN 33.9 ºW 2105 2013 213.4 108 275-2012 Acidity and 

Sodium (1750-
2010) (Maselli 

et al., 2017) 
Tunu_2013ra 78.0 ºN 33.9 ºW 2105 2013 213.4 108 275-2012 

NGT_B19 NGT_B19 78.0 ºN 36.4 ºW 2270 1993 150.4 100 746-1993 - 

NEEM NEEM_2011_S1 77.5 ºN 51.1 ºW 2454 2011 410.8 211 88-1999 - 

Summit07 Summit_2007 72.6 ºN 38.6 ºW 3216 2007 80.0 226 1772-2006
Acidity (Geng 
et al., 2014) 

Summit10 
Summit_2010 72.3 ºN 38.3 ºW 3258 2010 87.3 226 1743-2010 Acidity and 

Sodium 
(Maselli et al., 

2017) 
Summit_2010ra 72.3 ºN 38.3 ºW 3258 2010 87.3 226 1743-2009

ACT_11d ACT_11d 66.5 ºN 46.3 ºW 2148 2011 299.4 334 1161-2010 - 

Note: All data are previously unpublished except as noted in the last column. See McConnell et al. (2019) for ice core descriptions of Tunu, 
NGT_B19, NEEM, Summit10, and ACT_11d, and Cole-Dai et al. (2013) and Geng et al. (2014) for Summit07. aTunu_2013r and Summit_2010r 
are independent elemental measurements from parallel samples taken from Tunu_2013 and Summit_2010 ice cores, respectively. Acidity was only 
measured for Tunu_2013 and Summit_2010. Average values of the two independent measurements for Na, Cl, and the calculated Clexc are 
presented for Tunu and Summit10 in Figure 1 in the main text, while Figure 2 only shows Na, Cl, and Clexc based on the first measurement 
(Summit_2010 and Tunu_2013) to be consistent with acidity. 

Table S1. Location and other information for the six ice cores included in this study 
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 PI (1750) PA (1975) PD (2007) 

Year of Met Fields 2007 2007 2007 

Anthropogenic and 
biofuel emissions 

CEDSa 1750 CEDS 1975 
CEDS 2007; 

Regional emissions 

Biomass burning BB4CMIP6b 1750 BB4CIMP6 1975 BB4CMIP6 2007 

CH4 concentrations CMIP6c 1750 CMIP6 1975 NOAA GMDd 2007 

Long lived 
organohalogens: 
CH3Cl, CH2Cl2, 

CHCl3 and CH3Br 

CMIP6c 1750 CMIP6 1975 CMIP6 2007 

Long lived 
anthropogenic 

ODSse: 
CFCs, Halons, etc. 

Set to 0 GMIe 1975 GMI 2007 

VSLf species: 
CHBr3 and CH2Br2

Liang_bromocarbonf Liang_bromocarbon Liang_bromocarbon 

Iodocarbons: 
CH3I, CH2I2, CH2ICl, 

CH2IBr 

ORDONEZ_IODOC
ARBg 

ORDONEZ_IODOC
ARB 

ORDONEZ_IODOC
ARB 

Stratospheric Bry 56% of 2007 values h 56% of 2007 values 2007 

aGlobal anthropogenic emission from the Community Emissions Data System (CEDS) inventory 
(Hoesly et al., 2018). For present day simulation, the CEDS inventory is superseded by improved 
inventories in regions where we have better information: the US (NEI11v1) from EPA (2016), as 
implemented by Travis et al. (2016); Canada (CAC) implemented by van Donkelaar et al. (2008) 
with updates; East Asia (MIX inventory (Li et al., 2014)); Africa for 2006 and 2013 (DICE-
Africa inventory (Marais & Wiedinmyer, 2016)). bHistoric global biomass burning emissions for 
CMIP6 (BB4CMIP) (van Marle et al., 2017). cHistorical greenhouse gas concentrations for the 
Climate Model Intercomparison Project ‒ Phase 6 (CMIP6) (Meinshausen et al., 2017). 
dAtmospheric methane dry air mole fractions from the NOAA ESRL Carbon Cycle Cooperative 
Global Air Sampling Network (Dlugokencky, 2016). Data available for 1979‒2020. eOzone 
depletion substances (ODSs) is set with fixed surface concentrations in the model (Eastham et al., 
2014), based on NASA’s Global Modeling Initiative (GMI) code. f Very short lived (VSL) 
halogen emissions are taken from Liang et al. (2010), and CHBr3 at latitude>30 ⁰N is scaled 
according to Parrella et al. (2012). gEmission of iodocarbons are following Ordóñez et al. (2012). 
hStratospheric Bry concentrations are from the Liang et al. (2010), scaling for preindustrial and 
1975 are following previous studies (Liang et al., 2010; Sherwen et al., 2017).  

Table S2. Model setup for historical simulations of PI, PA and PD  
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no outliers Na vs. Cl Acidity vs. Clexc 

r(n) Full data Pre-1940 Post-1940 Full data Pre-1940 Post-1940 

Tunu 0.94 (251) 0.96 (180) 0.93 (57) 0.46 (231) 0.24 (169) 0.33 (67) 

NGT_B19 0.86 (222) 0.93 (166) 0.73 (56) 0.40 (206) 0.26 (145) 0.33 (54) 

NEEM 0.87 (225) 0.89 (174) 0.87 (55) 0.00 (196) 0.18 (164) 0.38 (49) 

Summit07 0.49 (225) 0.45 (160) 0.62 (64) 0.57 (226) 0.43 (158) 0.67 (63) 

Summit10 0.68 (253) 0.81 (185) 0.73 (70) 0.36 (243) 
−0.02 

(175) 
0.72 (66) 

ACT_11d 0.80 (248) 0.89 (176) 0.85 (70) 0.61 (243) 0.32 (168) 0.70 (69) 

 

raw data Na vs. Cl Acidity vs. Clexc 

r(n) Full data Pre-1940 Post-1940 Full data Pre-1940 Post-1940 

Tunu 0.98 (264) 0.99 (190) 0.94 (58) 0.40 (264) 0.14 (190) 0.34 (73) 

NGT_B19 0.89 (248) 0.91 (190) 0.78 (58) 0.30 (248) 0.28 (190) 0.34 (58) 

NEEM 0.94 (248) 0.94 (190) 0.91 (58) 0.20 (248) 0.22 (190) 0.38 (58) 

Summit07 0.44 (235) 0.32 (168) 0.78 (67) 0.43 (235) 0.23 (168) 0.64 (67) 

Summit10 0.55 (264) 0.87 (190) 0.37 (74) 0.31 (259) 0.02 (190) 0.51 (69) 

ACT_11d 0.83 (262) 0.90 (190) 0.84 (72) 0.70 (262) 0.51 (190) 0.75 (72) 

Note: r(n) represents correlation coefficients r with numbers (n) of pairs used in the calculation. 
The upper table shows values after removing outliers outside of 1.5×IQR, and the lower table 
shows the calculation using the raw data. All r values are significant, with p-values smaller than 
0.05. 

Table S3. Correlation coefficient between Na and Cl, Acidity and Clexc for the six ice-core 
records  
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Rates (Gg Cl a− 1) PI PA PD 

Cl* photolysis 158 833 679 
Organochlorines 91 128 147 
Total source 249 961 826 
Net Cl• → HCl 100 715 527 
Net Cl• → ClO* 180 270 338 
Total sink 279 985 865 
Burden (kg Cl) 21.8 16.0 19.2 

Note: Net Cl• → HCl is the net sink of Cl• to form HCl, which includes Cl• reaction with alkanes 
(methane, ethane, etc.), alkenes (isoprene, propene, etc.), alcohols (methanol, ethanol, etc.), 
formaldehyde, peroxides (hydrogen peroxide and hydroperoxyl radical), organic chlorine species 
(chloromethane, dichloromethane, chloroform), and acids (formic acid, acetic acid, etc.). Net Cl• 
→ ClO* is the net sink of Cl• to form ClO*, including Cl• reaction with ozone, hydroxyl radical, 
chlorine dioxide, methylperoxy radical, and ethylperoxy radical. 

Table S4. Sources and sinks of TRJ tropospheric Cl• from PI to PD simulations  
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Full Record Sen’s Slope (95% C.I.) p-value Trends 

ACT_11d 0.165 (0.033, 0.287) 0.008 yes 

Summit10 0.045 (−0.014, 0.109) 0.145 no 

Tunu 0.037 (0, 0.071) 0.032 no 

NGT_B19 0.007 (−0.043, 0.067) 0.745 no 

NEEM 0.042 (−0.030, 0.116) 0.261 no 

 

Post-1940 Sen’s Slope (95% C.I.) p-value Trends 

ACT_11d 0 (−0.940, 0.818) 0.930 no 

Summit10 −0.139 (−0.566, 0.355) 0.577 no 

Tunu 0.237 (0, 0.472) 0.041 no 

NGT_B19 0.274 (−0.417, 0.844) 0.514 no 

NEEM 1.036 (0.500, 1.556) 0 yes 

Note: We consider there are no trends when one of the following conditions are violated: 1. p-
values > 0.05; 2. 0 is within the 95% Confidence Interval (95% C.I.). 

Table S5 Sen’s Slopes for 5 Greenland ice core snow accumulation rates for the full record and 
post-1940 
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