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Abstract
Snow cover is of key importance for water resources in high mountain Asia (HMA) and is expected
to undergo extensive changes in a warming climate. Past studies have quantified snow cover
changes with satellite products of relatively low spatial resolution (∼500 m) which are hindered by
the steep topography of this mountain region. We derive snowlines from Sentinel-2 and Landsat 5,
7 and 8 images, which, thanks to their higher spatial resolution, are less sensitive to the local
topography. We calculate the snow line altitude (SLA) and its seasonality for all glacierized
catchments of HMA and link these patterns to climate variables corrected for topographic biases.
As such, the snowline changes provide a clear proxy for climatic changes. Our results highlight a
strong spatial variability in mean SLA and in its seasonal changes, including across mountain
chains and between the monsoon-dominated and the westerlies-dominated catchments. Over the
period 1999–2019, the western regions of HMA (Pamir, Karakoram, Western Himalaya) have
undergone increased snow coverage, expressed as seasonal SLA decrease, in spring and summer.
This change is opposed to a widespread increase in SLA in autumn across the region, and especially
the southeastern regions of HMA (Nyainqentanglha, Hengduan Shan, South–East Himalaya). Our
results indicate that the diversity of seasonal snow dynamics across the region is controlled not by
temperature or precipitation directly but by the timing and partitioning of solid precipitation.
Decadal snowline changes (1999–2009 vs 2009–2019) seasonally precede temperature changes,
suggesting that seasonal temperature changes in the Karakoram–Pamir and Eastern
Nyainqentanglha regions may have responded to snow cover changes, rather than driving them.

1. Introduction

Mountain snowpacks are a key component of the
water balance in themajor river basins of highmoun-
tainAsia (HMA, e.g. Immerzeel et al 2020) anddeliver
seasonally-delayed discharge that is especially crucial
in arid regions and drought years (Pritchard 2019).
Snowpacks in the region are expected to be highly
sensitive to future climate warming (Kraaijenbrink

et al 2021) with severe consequences for vulnerable
ecosystems and communities downstream (Viviroli
et al 2020). Snow cover changes are an important con-
trol of the land surface energy balance, and can feed-
back to the climate system. For example, snow cover
reduction is often associated with enhanced warming
at high elevations through the snow-albedo feedback
(e.g. Palazzi et al 2019), while changes in precipita-
tion seasonality and phase can have a strong effect on
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mass accumulation (e.g. Jouberton et al 2022). A gen-
eral increase in precipitation and a general decrease
in snow cover are expected at the scale of HMA in
the coming century, with a high spatial variability and
dependence on the socio-economic pathway (Lalande
et al 2021). Consequently, the future climate response
of snowpacks is not mechanistically linked to temper-
ature alone, although temperature changes are clearly
associated with changes in snow cover seasonality
(Notarnicola 2020, Tang et al 2022). Understanding
historic snowpack dynamics and climatic controls
is therefore crucial to consider the future of high-
mountain catchments and of the systems that depend
on their water resources.

The extremely rugged topography of HMA, com-
bined with spatially contrasting mesoscale atmo-
spheric drivers, leads to a diversity of climates across
the region associated with a diversity of glacier mass
balance patterns (e.g. Maussion et al 2014, Mölg
et al 2014, Sakai and Fujita 2017). Characterizing this
diversity and its evolution is hindered by the relat-
ive lack of high-elevation measurements (Tang et al
2013, Immerzeel et al 2015, Matthews et al 2020,
Miao et al 2024). Therefore, researchers have favored
remote sensing assessments of snowdynamics, invest-
igating snow cover patterns (Zhou et al 2013, Li et al
2019) and trends (Smith et al 2017, Ackroyd et al
2021, Tang et al 2022). However, these studies have
relied on coarse satellite data (e.g. MODIS at 500 m
resolution) that capture the broad seasonal and spa-
tial changes but are affected by steep topography
and cloud cover (e.g. Stillinger et al 2019) which
inhibits their reflection of fine-scale processes such as
radiation-driven snowmelt (e.g. Bouamri et al 2021).
Estimates of snow depth (Lievens et al 2019) and
snow–water equivalent (Smith and Bookhagen 2018)
rely on even coarser satellite data and/or numerical
models (e.g. Liu et al 2021) to estimate volumes or
mass at kilometer- to basin-scales. These metrics,
though, due to their integration of large observa-
tional areas, are difficult to compare betweendomains
because they also integrate dissimilar distributions of
elevation, area, and aspect. Snowlines are an altern-
ative metric of snow dynamics at the catchment and
basin scale which are independent of such hypsomet-
ric biases (Krajčí et al 2014, Xiao and Liang 2024)
while reflecting the spatial variability of the meteor-
ology (Tang et al 2014). As such, they provide a clear
proxy for climatic changes (McFadden et al 2011, Hu
et al 2019, Aranda et al 2023) and are sometimes
employed for quantifying and modeling interannual
changes in glacier health (e.g. Klein and Isacks 1999,
Rabatel et al 2012, Mernild et al 2013, Spiess et al
2016, Barandun et al 2018, Racoviteanu et al 2019,
Tang et al 2020, Loibl et al 2025). Snowlines are most
often derived from snow cover maps from optical

satellite images at various spatial and temporal resol-
utions (Krajčí et al 2014, Xiao and Liang 2024).When
derived from high-resolution data, they have proven
useful for disentangling the meteorological drivers of
seasonal snow cover change, including in catchments
with steep topographies, with vertical uncertainties
of the order of ∼10 m (e.g. Girona-Mata et al 2019,
Sasaki et al 2024). However this analysis has not pre-
viously been applied beyond individual catchments,
and a comprehensive understanding of snow dynam-
ics across HMA’s varied water basins is missing.

In this study, we leverage the Google Earth
Engine (GEE) archive of Landsat and Sentinel-2 high-
resolution multispectral satellite images to measure
snowline altitudes in all of HMA glacierized catch-
ments, accounting for clouds, rock outcrops, glaciers,
and surface water in each scene from1999 to 2019.We
use these measurements to construct a climatology of
the snowline seasonal variations in each catchment
across the region. We then disentangle the meteor-
ological drivers of the variable snowline seasonality
based on the ERA5-Land climate reanalysis, corrected
for each catchment’s hypsometric biases. Finally, we
assess seasonal snowline changes between 1999–2009
and 2009–2019 and their relationship to meteorolo-
gical forcings.

2. Methods

2.1. Catchment snowline altitudes
We derived snowlines for all glacierized catch-
ments across HMA for the period 1999–2019. The
catchments were defined as the intersection of the
Randolph Glacier Inventory 6.0 (hereafter RGI;
Pfeffer et al 2014) and the HydroBASINS (Lehner
and Grill 2013) for the Central Asia, South Asia West,
and South Asia East in RGI. We used the Pfafstetter
level 9 polygons to delimit catchments of relatively
similar size across the region. This resulted in 4776
glacierized catchments across the region, from 27◦ N
to 47◦ N and from 66◦ E to 105◦ E (figure 1), which
vary considerably in topographic distribution (SI
figure 1). As all these catchments contained glaciers
as of the RGI inventory date (early 2000s), we expec-
ted that they would all be affected by seasonal snow.

For each catchment we used publicly-available
satellite multispectral data from 1999 to 2019 (top-
of-atmosphere Sentinel-2 and Landsat 5, 7 and 8
scenes) to produce snow cover and snowline elevation
time series in GEE. We filtered the scenes based on
their metadata to only consider those with more than
50% cloud free area, and performed the following
scene-by-scene analysis for each catchment, closely
following themethod developed byGirona-Mata et al
(2019) and adapted for GEE by Sasaki et al (2024):
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1. First, all clouds and shadows were masked within
each scene to reduce false positive snow cover
identification. For Landsat (30 m resolution)
and Sentinel-2 (10 m resolution) sensors, we
used the Quality Assessment bands which con-
tain bitwise masks for clouds. For shadow map-
ping, with Landsat we adopted the approach
of Miles et al (2017) based on the blue and
near-infrared top-of-atmosphere reflectance val-
ues, using thresholds of 0.2 as in the original
study. With Sentinel-2, we used the method by
Hollstein et al (2016), tailored for this sensor. We
also masked out RGI glaciers and water bodies
(Pekel et al 2016).

2. We then identified snow-covered areas using
a Normalized Difference Snow Index threshold
value of 0.45 (Girona-Mata et al 2019). We
determined the boundary of the snow-covered
area and its elevation, ignoring boundary pixels
adjacent to glaciers, water, clouds, and shadow
(Girona-Mata et al 2019, Sasaki et al 2024).

3. We used the snow cover maps at 30 m resolution
to derive monthly, seasonal and annual maps of
snow cover frequency, defined as the ratio of snow
observations to total observations, for each catch-
ment for the 1999–2019, 1999–2009 and 2009–
2019 study periods. We then used these results
to determine the snow cover frequency distribu-
tion per elevation, based on the Advanced Land
Observing Satellite (ALOS) World 3D (AW3D)
30 m digital elevation model (DEM, Tadono et al
2014). Monthly catchment snow line altitudes
(SLA) were reconstructed using the mean eleva-
tion of the 0.5 frequency isoline of every available
scene (figure 1(d)), similar to Krajčí et al (2014).

4. We used a second order harmonic function, a
curve-fitting approach that is particularly suited
to dealing with cyclical data such as seasonal
changes, to fit the monthly SLAs for each catch-
ment and each of the three study periods (Ronald
Eastman et al 2009, Girona-Mata et al 2019)
weighing the monthly values by the number of
observations (figure 1(d)):

f(t) = a0 + a1cos (2π (Φ 1 − t)/T)

+a2cos (2× 2π (Φ 2 − t)/T)

where a0, a1 and a2 are themean SLA, the first and
second order SLA harmonic amplitudes, respect-
ively. They were used to interpret the spatial and
temporal variability of the SLA. Φ1 and Φ2 are
phase parameters characterizing the timing of the
SLA peaks and T the period. Such a regression
can reproduce both a double and a single peak
annual SLA, and the mean value and the two
amplitudes, calculated directly, provide a read-
ily accessible perspective of the spatial patterns

in snowline variations across the broad region
(figure 1(d)). These second order harmonic func-
tionswere used to characterize the SLA seasonality
and to compare between the three study periods.
The monthly temporal aggregation was applied
to reduce the influence of the limited number
of available satellite images, especially in the first
decade (SI figures 2–4). Furthermore, given the
smoothing effect from the harmonic regression,
using sub-monthly data has very little effect on
our results.

This method has identified snow-cover boundar-
ies which correspond closely to manually-delineated
snowlines from Landsat high-resolution multispec-
tral imagery, while avoiding problematic deep shad-
ows in regions characterized by steep topographies
(Girona-Mata et al 2019). Despite differences in satel-
lite sensors, data quality, resolution and processing
between the Landsat and Sentinel-2 images, the
method resulted in very close correspondence in SLA
for overlapping periods at five catchments (Sasaki et al
2024), thus validating that the fusion of multiple data
sources (from Landsat and Sentinel-2) has produced
a consistent set of snowline observations.

2.2. Link with climate
Temperature, precipitation and snowfall (also
referred to as solid precipitation) from ERA5-Land
(Muñoz-Sabater et al 2021) were derived for each
catchment. We consider ERA5-Land data as it has
been applied to make assessments of climatological
changes in HMA (e.g. Khanal et al 2023) or as for-
cing for glacier energy balance modeling (Arndt and
Schneider 2023, Fugger et al 2024) and often is among
the products with the best overall performance for
those compared to ground stations (e.g. Hamm et al
2020, Kumar et al 2021, Nepal et al 2024), particularly
for the analysis of monthly changes in temperature
and precipitation.We used theminimum,maximum,
mean annual, andmean June–July–August (JJA) tem-
perature averaged over the three study periods. For
precipitation and snowfall we used the mean annual,
mean JJA, and mean March–April–May (MAM) val-
ues from ERA5-Land, from which we also derived
solid fractions at the scale of the native grid resolu-
tion (∼9 km).

In order to remove the elevation bias of the
catchments, we applied an altitudinal normalization
to all climatic variables (precipitation, snowfall, and
temperature) following an approach similar to that
presented by Machguth et al (2009) and using the
AW3D 30 m DEM for distributed elevation data.
This approach calculates a polynomial regression of
order 4 between median elevation and median cli-
matic variable (temperature, precipitation or snow-
fall) of each catchment, using 40 elevation quantiles to
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Figure 1. (a)–(c) Amplitude parameters of each catchment obtained with the second order harmonic regression. Background
image was made with Natural Earth. The arrows in (a) indicate the main regional wind and precipitation patterns. (d) Example of
second order harmonic regression for the period 1999–2019 for a theoretical catchment, also showing the three different terms of
the harmonic function. (e) Second order harmonic regression of six catchments indicated by colored dots in maps (a)–(c). The
y-axis gives the relative elevations, with the dashed lines indicating the mean elevation (a0).

expose the underlying elevation effects (SI figure 5).
The anomalies from this regression are then used to
determine the catchment climatic variable values at a
reference elevation of 4000 m (SI figure 5), effectively
removing the elevation bias between catchments. We
quantified the correlation between variables using
the Spearman coefficient, using a threshold of ±0.85
to consider the correlation significant. We used this
definition to distinguish primary controls of SLA
variation, which have a significant correlation with at
least one amplitude parameter, from secondary con-
trols, which have a significant correlation with at least
one of the primary controls.

For the analysis of the variability in SLA in spe-
cific mountain ranges (Himalaya, Tien Shan and
Kunlun-Altun Shan), we took into account the dis-
tance across each range and along each range. The
distance across range was computed as the minimum
length between the catchment center and the 1000 m
(Himalaya)/1500 m (Tien Shan and Kunlun–Altun

Shan) altitude isoline. The distance along mountains
was defined as the distance from the west end of the
1000 m/1500 m altitude isoline.

3. Results and discussion

3.1. Spatial and seasonal variability of SLA across
HMA
Our results show that the catchment mean annual
SLA (a0) varies considerably across the region
(figure 1(a)): mean annual SLAs are highest in the
interior of the Tibetan Plateau, where they can exceed
5500 m asl (figures 1(a) and (e)), and considerably
lower in the north of HMA (to 3000 m asl). Mean
SLAs are also relatively lower around the periphery
of each major mountain belt of the region, where
orographic effects may lead to enhanced snowfall at
intermediate elevations (Bookhagen and Burbank
2010, Wang et al 2020) despite considerably higher
air temperatures.
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Figure 2. (a) Primary and secondary controls of the mean harmonic regression (a0), with the sign of the Spearman’s coefficient
indicated in red (positive) or blue (negative). (b)–(f) Density scatter plots of a0 as a function of a selection of primary controls.
The corresponding Spearman’s coefficient is indicated at the bottom of each plot. The blue boxes indicate the median and the
interquartile range where each bin includes one twentieth of the data. The full correlation matrix is available in the supplementary
information (SI figure 6).

The amplitude of the primary seasonal SLA har-
monic (a1) also varies continuously across the region
(figure 1(b)), but is anticorrelated to a0 (ρ=−0.99),
demonstrating that greater SLA seasonal variabil-
ity occurs for catchments with lower annual-average
snowlines. The greatest seasonal amplitudes are evid-
ent for the western and southern periphery catch-
ments (up to 1000 m), while a1 is very low (<50 m)
for catchments within the interior of the Tibetan
Plateau (figure 1(e)). SLAs present much stronger
seasonal patterns in Western Himalaya and Hindu
Kush with annual amplitudes from 500 m to 1000 m
(figure 1(e)) and a clear single peak in seasonal SLA.
For other catchments, SLA variations show a sec-
ondary peak, requiring a second harmonic (a2), for
example in theHengduan Shan (a2= 200m to 400m)
where spring and summer both provide substantial
solid precipitation (e.g. Yang et al 2013, Jouberton
et al 2022, figure 1(c)). For these domains, simple
onset and duration snow phenologies provide inad-
equate description of snow-cover variability.

Our study introduces amuch greater spatial detail
and accuracy than past studies of snow spatial and
seasonal variability (e.g. Smith and Bookhagen 2018,
Ackroyd et al 2021, Tang et al 2022) due to the direct

use of the higher-resolution source data, against
which MODIS observations are normally bench-
marked (e.g. Rittger et al 2021). This higher resolu-
tion allows us to directly isolate the seasonal snowline
elevation, rather than snow-covered area, and thus
investigate the spatial variations of snow dynamics
and their dependence on climate differences between
distinct domains. This is particularly valuable due to
the complex relationship with variables such as pre-
cipitation and its phase, which may be highly mod-
ulated by ongoing warming (Jennings et al 2018,
Jouberton et al 2022) or the variable presence of the
summer monsoon (Mölg et al 2014, Shaw et al 2022).

3.2. SLA variability is controlled by snowfall
seasonal partitioning
We leverage catchment-specific results to investigate
the climatological factors best explaining the spatial
variations of SLA climatology in HMA. Our results
highlight that metrics related to precipitation par-
titioning, rather than temperature itself, show the
strongest correlation (0.8) with the spatial variations
of SLA climatology (figure 2 and SI figure 6): the
annual solid precipitation fraction and the summer
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Figure 3. (a)–(c) Conceptual representation of the snow line altitude (orange line) and climatic variables of three catchments of
the region. The area permanently covered by snow is indicated in light blue and the area partially covered is in gray.

JJA and spring MAM fractions of annual solid pre-
cipitation. The annual solid precipitation fraction is
inversely correlated with a0 (figure 2(d)); this is intu-
itive, as high solid precipitation fractions at the refer-
ence elevation promote lower-elevation snowlines.

Seasonal fraction of solid precipitation shows an
even clearer association with the SLA climatology.
The JJA fraction of annual snowfall is positively cor-
related (ρ = 0.99) with a0, while the MAM frac-
tion of snowfall is negatively correlated (ρ = −0.88)
with a0 (figure 2 and SI figure 6). Catchments which
receive their most extensive snowfall in warm sum-
mer months such as in the Central and Eastern
Himalaya or parts of the Tibetan Plateau, linked
to the monsoonal climate (e.g. Sakai and Fujita
2017), typically exhibit snow cover only at higher-
elevations (high a0), and reduced SLA seasonal-
ity (low a1, figure 3(b)). Catchments which receive
extensive snowfall in spring months, on the other
hand, accumulate snow at lower elevations (redu-
cing a0) while also increasing the importance of sea-
sonal snow depletion (higher a1, figures 3(a) and (c)).
In fact, these three elements highlight the interlink-
ages of precipitation and temperature seasonality to
snow dynamics: although across catchments temper-
ature itself is not directly related to SLA variations
(ρ = 0.43), the annual amplitude of temperature is
positively correlated with a1 (ρ = 0.82; SI figure 6).
Indeed, the freezing line will vary with temperat-
ure, but this also implies that lower annual ranges

of temperature variation allow only high-elevation
annual-average snowlines (a0).

The seasonal partitioning of snowfall and the solid
fraction of precipitation can be identified as a com-
mon control of the spatial variability of SLA, des-
pite its heterogeneity across HMA. These findings
confirm that precipitation partitioning is the clearest
driver for snow phenological differences across HMA
(SI figures 6–10). This is particularly important given
that differences in precipitation seasonality can some-
times have a much stronger role in affecting gla-
ciers than differences in total annual precipitation
amounts (Maussion et al 2014, Sakai and Fujita 2017,
Smith and Bookhagen 2018, Jouberton et al 2022,
Shaw et al 2022). Precipitation partitioning remains
a major challenge for models and observations alike
(e.g. Ding et al 2014, Jennings et al 2018, Jouberton
et al 2022, Maina and Kumar 2023) and given fore-
casted warming in the 21st century, it will play an
increasingly critical role in the presence of mountain
snow cover and SLA in HMA (Li et al 2020, Lalande
et al 2021, Collier et al 2024). Consequently, regional
snow models should pay close attention to the inter-
actions of temperature with precipitation for future
simulations.

3.3. Influence of orography on SLA variability
along the margins of HMA
We extend this analysis to examine the SLA variability
across the principal topographic divides of HMA,
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Figure 4. (a)–(h) Across and along-range variability of different SLA and climatic variables for catchments in the Hindu
Kush–Karakoram–Himalayan (HKH) mountain chain (i). (i) Catchment map with the HKH catchments colored in green. (j)–(l)
Density scatter plots of a0 as a function JJA/annual snowfall ratio, a1 and temperature for the HKH catchments. The
corresponding Spearman coefficients are (j) 0.84, (k)−0.75, (l)−0.42. Please see also SI figures 11 and 12 for corresponding
depictions of the Kunlun–Altun Shan and Tien Shan mountain chains.

where climatic gradients are strongest, glaciers
are most common, and topography modifies cli-
matic patterns and resultant snow accumulation
(Bookhagen and Burbank 2010, Maussion et al 2014,
Potter et al 2018, Lalande et al 2023). Themonsoonal-
influence decreases across the Himalayas because
of the orography: total precipitation and temperat-
ure decrease with elevation (figures 4(a)–(h)) and
JJA/annual and MAM/annual snowfall show little
variation (figures 4(d) and (h)). This relative change
in the influence of the monsoon has a clear effect on
a gradual increase of a0 and a decrease of a1. Along
mountains from west (0 km) to the mid-Himalayas
(∼1800 km—figure 4(i)), the southmonsoonal influ-
ence increases and reaches a peak while westerlies
become less dominant, reflecting an inverse relation-
ship between JJA/annual and MAM/annual snow-
fall fractions (figures 4(d) and (h)). As a result, a0
increases from 3500 m to 5500 m and a1 decreases
from 800 m to 200 m on this western portion of the
along-mountains distance (figure 4(e)). Then, on the
second portion (from 1800 km to 3000 km), the SLA
parameters switch to the opposite trend, linked to a
decreasing South but increasing East Asian monsoon
influence. This local analysis highlights that the same
principle controls are in play for the Hindu Kush–
Karakoram–Himalaya range as across the broader
region (figures 2 and 3(j–l)). Once again snowfall and
precipitation partitioning metrics, highly influenced
by macroscale climate patterns and their regional
extents (e.g. the strength and intrusion of the sum-
mer monsoon), exert a clear control on both local
and regional spatial variability of SLA (Bookhagen
and Burbank 2010, Nash et al 2024). Similarly, for

the Tien Shan (SI figure 11) and Kunlun–Altun Shan
(SI figure 12) mountain chains, we find again that
snowfall (including seasonality) and precipitation
partitioningmetrics exhibit the strongest correlations
with SLA phenology (SI text 1). Catchment temperat-
ure plays a secondary role in the Kunlun–Altun Shan,
and shows no correlation in the Tien Shan.

3.4. Contrasting 21st century changes in SLA
between the East and theWest of HMA
Previous analyses have struggled to find clear trends
due to the high interannual variability of snow met-
rics in HMA subregions (You et al 2020, Li et al
2022, Tang et al 2022, Ren et al 2024). Our com-
parison of the first two decades of SLA variations
in the 21st century based on high resolution satel-
lite imagery highlights several contrasting patterns
of seasonal changes. The western regions of HMA
(Pamir, Karakoram, Western Himalaya) have under-
gone increased snow coverage, expressed as seasonal
SLA decrease, in spring and summer (−61 ± 79 m,
−36 ± 80 m, −62 ± 88 m change in MAM aver-
aged over the respective regions± the standard devi-
ation, −32 ± 100 m, −29 ± 96 m, −48 ± 158 m
in JJA, SI table 1). On the contrary, there is a
widespread increase in SLA in autumn (September–
October–November, SON) across the region, and
especially Nyainqentanglha, Hengduan Shan and
South-East Himalaya (+40 ± 78 m, +30 ± 120 m
and +44 ± 127 m change in SON respectively, SI
table 1 and figure 5). This corroborates previous
observations that have indicated significant shorten-
ing of snow cover duration in Nyainqentanglha and
Tien Shan, and increase in the Pamir, Karakoram and
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Figure 5.Mean seasonal SLA (a)–(d), temperature (e)–(h) and precipitation (i)–(l) changes between the 1999–2009 and
2009–2019 decades. Changes in mean precipitation are expressed as the percent change from 2009–2019 to1999–2009. The Pamir
region is circled in black on the panels (a)–(b) and the Nyainqentanglha region on the panel (c).

Western Himalaya regions (Tang et al 2022). Notably,
both of these patterns are accompanied by a general
increase in air temperature, especially in autumn and
summer, except for parts of the Pamir (no temper-
ature change) and Karakoram (cooling) regions in
summer. The climatology suggests complex regional
changes in seasonal precipitation, with precipitation
increases in the Pamir and Karakoram in the spring
and, more broadly, in the autumn (figure 5, Jiang
et al 2023). Precipitation increases are evident along
the Western and Central Himalayas, as well as along
the Kunlun–Altun Shan, in the summer and autumn,
whereas the Tibetan Plateau shows increased precip-
itation in autumn and winter. The Tien Shan exhibits
a variety of precipitation patterns due to the complex-
ity of local meteorology (e.g. Barandun et al 2021).

The temperature and precipitation patterns do
not show a direct control on SLA changes (figure 5),
but there is a clear correspondence between the spring
and early summer snowline evolution (figure 6(c))
and the winter precipitation (figure 6(e)). For the
western regions (Pamir and Karakoram especially),
more snow in the winter results in lower SLA in the
spring and early summer, as well as a later peak in
SLA (figures 6(b) and (g)). In these regions the SLA

is not sensitive to increasing winter temperature as
they remain far below the freezing line (figure 6(g)).
There, the longer-lasting snowpack could, in fact, be
partly responsible for the late spring and early sum-
mer decline in air temperature (figure 5(f), Wang
et al 2018). In the eastern regions of South–East
Himalaya and Nyainqentanglha, the increase in tem-
perature particularly in spring and autumn renders
the changes in total precipitation secondary, by con-
trolling precipitation phase and snow cover reten-
tion, leading to a general increase in SLA particu-
larly in these seasons (figure 6(h)). Despite a lower-
elevation and longer-lasting snowpack in the West in
the spring and early summer (figure 6(b)), the entire
region undergoes rising SLA in the late summer and
early autumn (figure 6(d)), indicating that these sea-
sons are more sensitive to the rising air temperatures
(figure 6(f)) than to the winter snowfall changes.

Our observed SLA changes correspond well to the
geodetic mass balance and albedo patterns of gla-
ciers observed over the period 2000–2020 (Hugonnet
et al 2021, Ren et al 2024), indicating that gla-
ciers undergo a similar response to regional climate
changes. In particular, the albedo of glaciers has
increased in the west in spring and summer, while it
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Figure 6. (a) Synchronicity of temperature and precipitation, defined as the Spearman’s coefficient between monthly mean air
temperature and precipitation values. A Spearman’s coefficient of+1 means a complete synchronicity of T and P annual
variations, whereas a value of−1 denotes an independent evolution of T and P over the period 1999–2019. (b)–(f) Changes
between the 1999–2009 and 2009–2019 decades of: (b) harmonic coefficientΦ1 standing for the date of SLA peak (a negative
value indicates that the SLA peak is happening sooner in the recent decade), (c) mean SLA over the months May to July, (d) mean
SLA over the months August to November, (e) total precipitation received from January to April and (f) mean temperature over
the months August to November. (g)–(h) Mean SLA, temperature and precipitation decadal changes between 1999–2009 and
2009–2019 for the Pamir and Nyainqentanglha regions. The arrows indicate the monthly sign and relative proportion of the
variation observed. The shaded areas correspond to the 1−σ spread over the region. The Pamir region is circled in brown and the
Nyainqentanglha region in blue on the panels (a)–(f).

has decreased everywhere else and in all other seasons
(Ren et al 2024). Similarly, the Pamir, Karakoram and
Kunlun regions demonstrated near-neutral glacier

mass balances during this period, while glaciers are
losingmass extensively in all other regions (Hugonnet
et al 2021). Two regional trends are therefore visible

9
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in HMA during the 1999–2019 period: (1) In the
west, higher winter snowfall results in a longer-lasting
snowpack and lower SLA in spring and early sum-
mer (figures 5(a) and (b)) possibly leading to albedo
driven and/or density driven (katabatic wind) sum-
mer cooling (figure 5(f)) which could have promoted
a feedback toward a pattern of reduced mass loss
(Farinotti et al 2020, Ren et al 2024). (2) In the east, a
weakening summer monsoon combined with warm-
ing air temperature result in rising SLA and exacer-
bating declining glacier health (Miles et al 2021, Shaw
et al 2022). This confirms the important link between
the state of the spring and early summer snowpack
and glacier health, although the generalized increase
in summer and autumn temperatures limit this effect,
leading to recent rising autumn SLA and glacier
decline throughout the entire region (Hugonnet et al
2021, Ren et al 2024, Xie et al 2024).

3.5. Limitations
The greatest limitations of our approach come from
the cloud cover preventing snowline identification in
the optical satellite images, alongwith the variable fre-
quency of image acquisitions throughout the study
period. Although we expect these elements to have
a limited influence on our analysis of the regional
trends and drivers of SLA (Sasaki et al 2024), prom-
ising lines of research on sensor fusion (e.g. Rittger
et al 2021), including with Synthetic Aperture Radar
sensors, could reduce potential biases of future stud-
ies. Such studies will also benefit from longer records
of earth observation data as well as from improved
resolution andphysics of climate reanalysis and atmo-
spheric models (e.g. Collier et al 2024) that may fur-
ther constrain the degree towhich precipitation phase
changes drive patterns of SLA response. Despite these
limitations, the SLA patterns we quantified are robust
and provide opportunities for both catchment and
regional scale hydrological modeling through data
assimilation (e.g. Metref et al 2023) and model val-
idation (e.g. Buri et al 2023, Fugger et al 2024).

4. Conclusions

We calculated the SLA seasonality of all catchments
in HMA for the period 1999–2019. Our results have
shown a high spatial variability in the mean SLA and
its seasonal patterns, with lower mean SLA in the
southern and western periphery catchments, which
is also where the yearly altitudinal amplitude of
the snowline is the greatest. The catchment SLA is
primarily controlled by the precipitation phase, in
terms of the seasonal partitioning of precipitation
and its phase rather than strictly with temperature
itself, which highlights the influence of the differ-
ent climatic regimes on the state of the snowpack
and its evolution. In the monsoon-dominated catch-
ments where most of the snowfall occurs during

the monsoon, the mean SLA is higher, while in
the westerlies-dominated catchments, a high spring
snowfall ratio leads to lower SLA and higher seasonal
variability. These regional differences also lead to dif-
ferent responses to recent climatic changes. In the
monsoon-dominated catchments, rises in temperat-
ure in the spring and autumn have led to a reduc-
tion in the snowfall partition and therefore rising SLA
in these seasons. In the west, higher precipitation in
winter and early spring has resulted in snow reten-
tion in spring and early summer. This precedes cooler
air temperatures in summer, suggestive of a cooling
effect from this longer-lasting snowpack, the com-
bination of which could have contributed to main-
taining glaciers in a near neutral mass balance in this
region. However, the generalized rising temperatures
limit this effect to spring and early summer and res-
ult in a region-wide increase in SLA in summer and
autumn.
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Supplementary Information 
 
Text 1. SLA variability of the Himalaya, Tien Shan and Kunlun-Altun Shan mountain ranges.  
 
We consider along- and across- range snow line altitude (SLA) variability around the principal topographic 
divides of high mountain Asia (HMA) to disentangle the interplay of orography, the primary controls of SLA, 
and SLA variability (figure 4, SI figures 4 and 5). For all these analyses, we use the altitudinally-corrected 
catchment-specific ERA5-Land data (Methods), binned by distance along or across the mountain ranges 
(figure 4). 
 
In the Himalaya (figure 4, text reproduced here from the main text for completeness), the 
monsoon-influence on climate and SLA decreases across the range because of the orography: total 
precipitation and temperature decrease with elevation (figure 4(a-h)) and JJA/annual and MAM/annual 
snowfall show little variation (figure 4(d-h)). This relative change in the influence of the monsoon has a 
clear effect on a gradual increase of a0 and decrease of a1. Along mountains from west (0 km) to the 
mid-Himalayas (~1 800 km - figure 3(i)), the south monsoonal influence increases and reaches a peak while 
westerlies become less dominant, reflecting an inverse relationship between JJA/annual and MAM/annual 
snowfall fractions (figure 3(d-h)). As a result, a0 increases from 3 500 m to 5 500 m and a1 decreases from 
800 m to 200 m on this western portion of the along-mountains distance (figure 3(e)). Then, on the second 
portion (from 1 800 km to 3 000 km), the SLA parameters switch to the opposite trend, linked to a 
decreasing South but increasing East Asian monsoon influence.  
 
In the Tien Shan, a complex mixture of moisture source paths leads to more localized weather conditions 
(Barandun et al 2020), rather than strong and clear seasonal advection (such as via the westerlies or the 
monsoon). This leads to some disagreement between climate reanalyses (Barandun and Pohl 2023), so our 
interpretations should be taken with caution. However, a0 and a1 are inversely correlated with elevation. For 
the full region, the annual-average (a0) and annual amplitude (a1) of SLA are inversely related (SI figure 8). 
There is differential response of SLA for the southern and northern portions of the domain, as warmer 
temperatures in the south (altitudinally-adjusted) force a higher general SLA (a0) in this domain, but that 
precipitation phase (using the JJA fraction of annual snowfall) is the best predictor of SLA differences. The 
east-west patterns are complex due to local weather conditions, and highlight a general decline in a0 
moving eastwards, as catchment elevation decreases. Again, the JJA fraction of annual snowfall is the best 
overall predictor of a0, and therefore a1 (SI figures 5 and 6). 
 
In the Kunlun-Altun Shan domain, SLA metrics are again inversely correlated with elevation, but uniquely in 
this domain, the ERA5-Land data does not show differentiation of precipitation across the range. Along the 
mountains, precipitation differentiation highlights the transition of dominant moisture source from 
westerlies to monsoon, as for the Himalaya (Yao et al 2012). As precipitation is held steady across much of 
the region, in this domain temperature is a secondary predictor of SLA differences, but surprisingly, 
warmer temperatures relate to a lower mean SLA (a0). Consequently, this relationship does not correspond 
to a direct control (warmer temperatures would lead to more melt, as well as more liquid precipitation, 
and therefore higher snowlines).  Rather, it is more likely that these warmer (altitudinally-adjusted) 
temperatures are actually a proxy for the moisture supply regime, as the temperature is, in this domain, 
related to the seasonal partition of moisture supply, particularly across the mountain range. In the south, 
colder (altitudinally-adjusted) temperatures relate to a larger JJA snowfall fraction, indicative of monsoon 
moisture sourcing, and a higher SLA despite the colder temperatures. As for the other regions, the JJA 
fraction of snowfall is again the best predictor of SLA variations across the whole mountain range.  
 
Our results show that in all three mountain chains, the JJA fraction of snowfall is the best overall predictor 
of SLA annual mean (a0) and annual amplitude (a1). This is despite very different settings in terms of 
moisture source and orography: for the Hindu Kush-Himalaya (HKH), summer moisture is driven across the 



range by the monsoon and winter precipitation comes from the West; for the Tien Shan a variety of local 
situations lead to multiple source paths without consistent orographic drive; for the Kulun-Altun Shan 
moisture supply is primarily from westerlies, but with an important component from the monsoon in 
summer. While SLA is clearly best predicted by seasonal precipitation phase (i.e. the JJA fraction of 
snowfall), we hypothesize that the intersection of moisture source path and orography controls where 
peak snowfall occurs. In the Hindu Kush-Himalaya, moisture from the monsoon is directed across the 
mountains, leading to strong orographic amplification of precipitation (e.g. Bookhagen and Burbank 2010) 
and a severe gradient across the range, while seasonality of precipitation varies along the range. In the 
Kunlun-Altun Shan, the monsoon can be an important moisture source in the east, but does not drive 
across the range, leading to strong orographic effects. The monsoon is instead secondary to the westerlies, 
which are directed along the range and strongest in the west, leading to differential precipitation along the 
range, but different precipitation seasonality across the range. This leads to relatively little precipitation 
quantity differentiation across the range (although the seasonal phase of precipitation does differ) but a 
strong fluctuation across the range as the moisture supply source transitions. For the Tien Shan, moisture 
can come from different directions (including local recycling) and there is not a strong local orographic 
driver or locus of peak snowfall. 
 
Interpreting these patterns in terms of SLA, in the Hindu Kush-Himalaya and the Kunlun-Altun Shan 
mountain chains, the tradeoff between the monsoons and westerlies is clearly indicated by the seasonality 
of snowfall (i.e. the JJA fraction of snowfall).  This is a direct proxy for precipitation phase, as it accounts for 
the synchronicity of temperature and precipitation (if they are seasonally in phase or anticorrelated), 
which is a physical control on SLA. This is despite the generally small fractions of JJA snow relative to the 
annual total (<0.5). Notably, temperature is only a reliable predictor for SLA metrics across the 
Kunlun-Altun Shan, where precipitation varies little in quantity but considerably in timing; here, 
temperature exerts the opposite relationship with SLA to the expected control. In the Tien Shan, despite 
the variety of sources for summer precipitation, the same relationship of SLA with the JJA fraction of 
annual snowfall plays out, again despite low total JJA snowfall amounts. 
 
In summary, snowfall and precipitation partitioning metrics, highly influenced by macroscale climate 
patterns and their regional extents (e.g. the strength and intrusion of the summer monsoon), exert a clear 
control on both local and regional spatial variability of SLA for all three mountain chains (Bookhagen and 
Burbank 2010, Nash et al 2024). Similarly, we find again that snowfall (and especially snowfall seasonality) 
and precipitation partitioning metrics exhibit the strongest correlations with SLA phenology. Catchment 
temperature plays a secondary role only in the Kunlun-Altun Shan, but is in fact a proxy for the transition 
of the dominant moisture source. 
 



 
SI Figure 1. Mean catchment altitude (from SRTM DEM) for the level-9 HydroBASINS catchments in high 
mountain Asia. 
 

 

SI figure 2. Number of available scenes for each catchment over the period 1999-2019 after filtering of 
clouds. 
 



 

SI figure 3. Number of available scenes for each catchment over the period 1999-2009 after filtering of 
clouds. 

 

SI figure 4. Number of available scenes for each catchment over the period 2009-2019 after filtering of 
clouds. 
 



 
 
SI figure 5. Demonstration of altitudinal normalization of temperature (a), precipitation (b) and snowfall (c) 
data to the reference elevation of 4 000 m a.s.l. (dashed line). Catchment values (yellow scatter plot in 
background) are first binned with respect to elevation, to reveal the underlying variability (e.g. Machguth 
et al 2009) (black box plots). Logarithm values of precipitation and snowfall values are used. The median 
values (orange dots) for each of 40 quantile bins are used to fit a 4th-order polynomial function (red curve). 
The deviations from this polynomial are then used to normalize each catchment’s precipitation values to 4 
000 m a.s.l. (dashed vertical grey line). 
 



 
SI figure 6. Correlation plot of all variables investigated over the period 1999–2019. 
 



 
SI figure 7. High mountain Asia regions (Bolch et al 2019). DA: Dzhungarksy Alatau, ETS: Eastern Tien Shan, 
CTS: Central Tien Shan, NWTS: North/Western Tien Shan, PA: Pamir Alay, WP: Western Pamir, EP: Eastern 
Pamir, EHK: Eastern Hindu Kush, K: Karakoram, WH: Western Himalaya, CH: Central Himalaya, EH: Eastern 
Himalaya, GM: Gangdise Mountains, TIM: Tibetain Interior Mountains, WKS: Western Kunlun Shan, EKS: 
Eastern Kunlun Shan, AS: Altun Shan, QS: Qilian Shan, EMT: Eastern Tibetan Mountains, TS: Tanggula Shan, 
N: Nyainqentanglha, HS: Hengduan Shan. The level-9 HydroBASINS catchments in high mountain Asia are 
indicated in blue. 
 



 
SI figure 8. Spearman coefficients between the harmonic regression coefficient a0 and the precipitation 
partitioning indicators for all subregions. 
 
 
 
 



 
SI figure 9. Spearman coefficients between the harmonic regression coefficient a1 and the precipitation 
partitioning indicators and temperature indicators for all subregions. 
 
 
 



 
SI figure 10. Spearman coefficients between the harmonic regression coefficient a2 and the precipitation 
partitioning indicators and temperature indicators for all subregions. 



 
SI figure 11. (a-h) Across and along-range variability of different SLA and climatic variables for the Tien 
Shan catchments (i). (i) Catchment map with the Tien Shan catchments colored in green. (j-l) Density 
scatter plots of a0 as a function JJA/annual snowfall ratio, a1 and temperature for the Tien Shan catchments. 
The corresponding Spearman coefficients are (j) 0.4, (k) -0.71, (l) 0.24. 
 

 
SI figure 12. (a-h) Across and along-range variability of different SLA and climatic variables for the 
Kunlun-Altun Shan catchments (i). (i) Catchment map with the Kunlun-Altun Shan catchments colored in 
green. (j-l) Density scatter plots of a0 as a function JJA/annual snowfall ratio, a1 and temperature for the 
Kunlun-Altun Shan catchments. The corresponding Spearman coefficients are (j) 0.94, (k) -0.70, (l) -0.75. 
 
 
 

 

 
 



SI table 1. Seasonal SLA changes (m) for each subregion: mean and standard deviation. 

Subregion 
SLA change 
MAM in m (± 1σ) 

SLA change JJA in 
m (± 1σ) 

SLA change SON 
in m (± 1σ) 

SLA change DJF 
in m (± 1σ) 

EHK -89.01 ± 94.47 -79.05 ± 177.07 3.36 ± 125.82 36.21 ± 112.28 
WH -61.57 ± 88.01 -48.65 ± 158.19 1.66 ± 108.41 13.66 ± 118.53 
EH 10.38 ± 112.06 -54.1 ± 372.86 44.33 ± 127.13 10.02 ± 67.39 
CH -23.97 ± 110.24 22.22 ± 307.66 37.93 ± 152.82 4.3 ± 92.35 
K -36.04 ± 80.05 -29.34 ± 99.58 -2.8 ± 63.59 -6.06 ± 74.02 
WP -48.62 ± 83.71 -29.3 ± 95.77 24.63 ± 99.12 14.16 ± 113.1 
PA -61.34 ± 79.1 -32.31 ± 99.76 57.25 ± 106.49 -17.21 ± 113.08 
NWTS -24.51 ± 97.32 -35.79 ± 178.75 15.28 ± 126.75 -11.09 ± 143.5 
DA -62.88 ± 267.9 42.34 ± 534.95 -16.22 ± 134.58 -7.31 ± 124.28 
WKS -9.61 ± 95.39 1.33 ± 104.36 20.13 ± 88.01 18.81 ± 84.04 
N 32.01 ± 74.33 12.97 ± 177.11 39.67 ± 77.8 9.53 ± 57.04 
GM -12.73 ± 78.96 21.85 ± 193.65 3.42 ± 127.87 -23.52 ± 93.58 
HS 51.81 ± 99.28 3.17 ± 251.55 29.83 ± 120.49 23.79 ± 60.7 
TIM 8.38 ± 75.0 -15.26 ± 137.42 7.28 ± 88.01 -11.5 ± 80.41 
TS -7.22 ± 44.36 -28.83 ± 108.92 9.36 ± 62.53 12.25 ± 48.3 
ETM 0.68 ± 45.56 15.69 ± 105.45 -1.51 ± 54.41 6.23 ± 41.72 
QS -0.95 ± 91.15 20.7 ± 174.27 -14.01 ± 109.35 7.78 ± 95.13 
EKS -12.37 ± 81.77 -1.46 ± 124.94 7.59 ± 79.41 -3.76 ± 79.68 
AS 27.49 ± 110.15 -67.67 ± 149.13 34.51 ± 95.26 -52.98 ± 95.51 
ETS -28.83 ± 133.6 39.52 ± 254.97 -17.95 ± 153.68 -9.46 ± 114.21 
CTS -37.29 ± 119.41 -9.53 ± 212.26 20.92 ± 108.07 -15.67 ± 94.55 
EP -4.48 ± 81.05 -48.81 ± 128.24 1.52 ± 76.61 19.32 ± 121.28 
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