Contents lists available at ScienceDirect





journal homepage: www.elsevier.com/locate/ejrh



## Glacier meltwater contribution to river runoff in Western Mongolia

Check for updates

Purevdagva Khalzan <sup>a,b</sup>, Sanjar Sadyrov <sup>c,d</sup>, Akiko Sakai <sup>b</sup>, Kenji Tanaka <sup>d</sup>, Koji Fujita <sup>b</sup>, <sup>\*</sup>

<sup>a</sup> Information and Research Institute of Meteorology Hydrology and Environment, Ulaanbaatar, 15160, Mongolia

<sup>b</sup> Graduate School of Environmental Studies, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan

<sup>c</sup> Mountain Societies Research Institute, University of Central Asia, Bishkek, 720001, Kyrgyzstan

<sup>d</sup> Disaster Prevention Research Institute, Kyoto University, Uji, 611-0011, Japan

## ARTICLE INFO

Dataset link: https://doi.org/10.5281/zenodo.1 4729735, https://cds.climate.copernicus.eu/, h ttps://doi.org/10.5066/F7DF6PQS

Keywords: Glacier meltwater River runoff Arid terrain Mongolia

## ABSTRACT

Study regions: Three river basins in western Mongolia (Khovd, Uvs, and Zavkhan). Study focus: Water resources in Mongolia, which have been poorly studied to date, are limited and unevenly distributed, with the contribution of glacier meltwater being unknown. We simulated the runoff in three river basins in western Mongolia that receive glacier meltwater. ERA5 reanalysis data were evaluated using observations at 28 meteorological stations, and then the glacier meltwater and river runoff were simulated using statistically downscaled ERA5 reanalysis data and three models: an energy-mass-balance model for glaciers, a land-surface process model for ice-free terrain, and a river runoff model to combine the runoff from the two terrains. The simulated runoffs are validated with observations at 34 hydrological stations. New hydrological insights for the region: The glacier meltwater contribution, which is first quantitatively evaluated, is substantial in the Khovd River basin, occurs only in some sub-basins of the Uvs Lake basin, and is negligible in the Zavkhan River basin. The glacier-free simulation indicates that, if glaciers were to disappear, river runoff would significantly decrease during the summer, with the peak flow shifting 1-2 months earlier compared to the present day. The glacier meltwater contribution to river runoff exhibits a nonlinear relationship with the glacier area contribution, which is much greater than that found in a previous study for Tien Shan, suggesting that shrinking ice mass would supply larger amounts of water. Analyses of correlation and extremes suggest that runoff from glacierized catchments responds differently than runoff from glacier-free terrains and thus would compensate for a water deficit caused by a warm and dry environment by supplying glacier meltwater, and vice versa.

## 1. Introduction

Mongolia, an inland country in Northeast Asia (Fig. 1), is isolated from the ocean (Sato et al., 2007; Antokhina et al., 2019). According to the Köppen–Geiger climate classification map, the mountain regions of northwestern Mongolia are polar and tundra zones, whereas the lowland regions are arid and desert zones (Kottek et al., 2006). The climate of Mongolia is characterized by a wide range of temperatures and low precipitation (Batsukh et al., 2008; Munkhbat et al., 2022).

Mongolia's total water resource is estimated to be about 600 km<sup>3</sup>, with 89% of this water being stored in 3500 lakes, 5.5% in 3800 rivers, 3.5% in 560 glaciers, and 2.0% as groundwater (Garmaev et al., 2019). The high mountain ranges in northwestern Mongolia produce 70% of Mongolia's surface water (Batsukh et al., 2008). Glaciers are distributed across the 42 mountain massifs in the

\* Corresponding author. E-mail address: cozy@nagoya-u.jp (K. Fujita).

https://doi.org/10.1016/j.ejrh.2025.102375

Received 4 November 2024; Received in revised form 4 April 2025; Accepted 4 April 2025

Available online 8 May 2025

<sup>2214-5818/© 2025</sup> Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



Fig. 1. Studied basins in western Mongolia (inset map). Purple, blue, and red polygons denote the Khovd River, Uvs Lake, and Zavkhan River basins, respectively. Blue lines, dark and light blue shadings denote rivers from the HydroSHEDS database (Lehner and Grill, 2013), glaciers from the GAMDAM glacier inventory (Nuimura et al., 2015; Sakai, 2019), and lakes, respectively. Khar-Us, Uvs, and Airag are the terminal lakes of the basins. Light blue triangles and orange circles denote hydrological and meteorological stations, respectively, whose details are available in Figure S1 and Tables 1 and 2. Open yellow diamonds denote the glaciers studied in a previous study (Khalzan et al., 2022) and their precipitation parameters are used in this study.

Mongolian Altai Mountains (Batimaa et al., 2011). In 2016 the total glacier area was 334 km<sup>2</sup> (627 glaciers), as inferred from Landsat –8 and Sentinel-2 image analysis, with 206 of these glaciers exhibiting a 43% reduction in glacier area between 1990 and 2016 (Pan et al., 2018). Ongoing fluctuations in the size of mountain glaciers, which may directly affect water resources and flow patterns, represent a crucial aspect of the hydrological systems within the watersheds of the Mongolian Altai Mountains. Consequently, climate change may reshape water resources by impacting glacier mass balances, thereby influencing regional development (Orkhonselenge and Harbor, 2018).

Few studies have examined glaciers and glacier-fed rivers in Mongolia. The first glacier-related study in Mongolia assessed the total glacier volume, which was estimated to be 62.8 km<sup>3</sup> (Dashdeleg et al., 1983). Century-scale changes in glacier size have been reported for glaciers in the Turgen Mountains (Kamp et al., 2013). Multi-decadal glacier inventories have been created for 1990, 2000, and 2010 (Kamp and Pan, 2015), with glacier recession then analyzed from these inventories (Pan et al., 2018). In situ glacier monitoring has been conducted for Potanin Glacier since 2003 (Kadota and Davaa, 2007; Kadota et al., 2011; Konya et al., 2010), and long-term annual mass balances have been reconstructed using energy-mass-balance models (Zhang et al., 2017; Khalzan et al., 2022). Davaa (2010) reported that the mean annual runoff for rivers originating from the Altai Mountains has increased by 15%–35% during the past 30–70 years, and proposed that the increased runoff was due to increased glacier melting. Pan et al. (2019) estimated the contribution of glacier meltwater (GMW) to river runoff in the upper Khovd River basin to be 8%–18% by assuming a simple mass-balance gradient and equilibrium line altitude (ELA), although the results were not validated and observational data were not considered. In a six-day observational study of the Tsambagarav Massif, Bantcev et al. (2019) estimated the contribution of GMW to river flow to be 20%–30%.

Previous studies of river runoff in western Mongolia have made estimates based on simple assumptions or short observational periods. No estimates have been made over the scale of large basins in the region or over multiple decades. This study aims to quantitatively evaluate the contribution of GMW to river runoff in western Mongolia using physically based models of glaciers and land-surface processes.

## 2. Data and methods

#### 2.1. Target basins and data

We performed runoff simulations for the Khovd River, Uvs Lake, and Zavkhan River basins in western Mongolia (Fig. 1). The Khovd River basin, in westernmost Mongolia, is the most glacierized basin, with its runoff originating in the Altai Mountains and flowing into Khar-Us Lake (Dgebuadze et al., 2014; Syromyatina et al., 2015). The basin covers 57,000 km<sup>2</sup> and is monitored by 17 hydrological stations and 12 meteorological stations. The Uvs Lake basin, which is located in the northern part of western Mongolia

#### Table 1

Overview of the 30 hydrological stations in western Mongolia.  $A_{glc}$  denotes glacier area ratio.

| Station name                | Code | Large   | Longitude | Latitude | Catchment area     | Glacier area       | $A_{glc}$             |
|-----------------------------|------|---------|-----------|----------|--------------------|--------------------|-----------------------|
|                             |      | basin   | (°E)      | (°E)     | (km <sup>2</sup> ) | (km <sup>2</sup> ) | (%)                   |
| Tsagaan Tsengel             | TsT  | Khovd   | 88.517    | 49.092   | 586.2              | 71.44              | 12.2                  |
| Sogoog Khokhkhotol          | SoK  | Khovd   | 88.899    | 49.244   | 1828.8             | 2.29               | $1.25 \times 10^{-1}$ |
| Kharbut Altai               | KhA  | Khovd   | 89.513    | 48.292   | 3127.0             | 0.00               | 0.00                  |
| Sagsai Buyant               | SaB  | Khovd   | 89.534    | 48.578   | 4681.0             | 20.69              | $4.42 \times 10^{-1}$ |
| Turgan Sagsai               | TuS  | Khovd   | 89.680    | 48.874   | 3235.6             | 12.70              | $3.93 \times 10^{-1}$ |
| Khovd Ulgii                 | KhU  | Khovd   | 89.948    | 48.979   | 25 513.9           | 202.66             | $7.94 \times 10^{-1}$ |
| Khovd Bayannuur             | KhB  | Khovd   | 91.101    | 48.986   | 39977.1            | 258.08             | $6.46 \times 10^{-1}$ |
| Ulaan am Erdeneburen        | UaE  | Khovd   | 90.773    | 48.601   | 22.1               | 2.24               | 10.1                  |
| Namir Omnogovi              | NaO  | Khovd   | 91.719    | 49.118   | 583.24             | 9.2                | 1.59                  |
| Chigertei Deluun            | ChD  | Khovd   | 90.697    | 47.839   | 2107.01            | 5.0                | $2.38 \times 10^{-1}$ |
| Gantsmod Deluun             | GaD  | Khovd   | 90.684    | 47.619   | 3650.7             | 4.40               | $1.20 \times 10^{-1}$ |
| Buyant Deluun               | BuD  | Khovd   | 90.840    | 47.790   | 1146.7             | 1.43               | $1.25 \times 10^{-1}$ |
| Buyant Khovd                | BuK  | Khovd   | 91.621    | 48.015   | 7132.3             | 9.74               | $1.37 \times 10^{-1}$ |
| Khovd Myangad               | KhM  | Khovd   | 91.900    | 48.233   | 55673.0            | 329.29             | $5.91 \times 10^{-1}$ |
| Dundtsenkher Monkhkhairkhan | DuM  | Khovd   | 91.857    | 47.071   | 2030.7             | 27.18              | 1.34                  |
| Doloonnuur Monkhkhairkhan   | DoM  | Khovd   | 91.831    | 47.093   | 1567.0             | 24.85              | 1.59                  |
| Togrog Mankhan              | ToM  | Khovd   | 92.229    | 47.466   | 5532.9             | 22.74              | $4.11 \times 10^{-1}$ |
| Kharig Sagil                | KhS  | Uvs     | 90.757    | 50.240   | 1563.0             | 17.26              | 1.10                  |
| Turgen Turgen               | TuT  | Uvs     | 91.606    | 50.077   | 993.1              | 7.89               | $7.94 \times 10^{-1}$ |
| Kharkhiraa Tarialan         | KhT  | Uvs     | 91.861    | 49.780   | 886.9              | 34.77              | 3.92                  |
| Khangiltsag Tsagaankhairhan | KgT  | Uvs     | 94.242    | 49.431   | 494.7              | 0.00               | 0.00                  |
| Baruunturuun Baruunturuun   | BaB  | Uvs     | 94.389    | 49.588   | 1000.0             | 0.00               | 0.00                  |
| Tes Bayan Uul               | TbU  | Uvs     | 96.440    | 49.742   | 12470.2            | 0.00               | 0.00                  |
| Yaruu Yaruu                 | YaY  | Zavkhan | 96.710    | 48.190   | 425.3              | 0.00               | 0.00                  |
| Chigestei Uliastai          | ChU  | Zavkhan | 96.849    | 47.740   | 1661.2             | 0.69               | $4.15 \times 10^{-2}$ |
| Bogd Uliastai               | BoU  | Zavkhan | 96.850    | 47.740   | 2715.6             | 0.38               | $1.41 \times 10^{-2}$ |
| Shar Us Gurvanbulag         | SuG  | Zavkhan | 98.565    | 47.283   | 1039.9             | 0.00               | 0.00                  |
| Buyant Otgon                | BuO  | Zavkhan | 97.639    | 47.118   | 8666.9             | 0.06               | $7.26 \times 10^{-4}$ |
| Zavkhan Guulin              | ZaG  | Zavkhan | 97.267    | 46.567   | 11 908.2           | 0.18               | $1.52 \times 10^{-3}$ |
| Zavkhan Dorvoljin           | ZaD  | Zavkhan | 94.993    | 47.644   | 38 012.1           | 0.18               | $4.80\times10^{-4}$   |

and is  $5700 \text{ km}^2$  in size, is designated as a natural world heritage site (Grunert et al., 2000). Glaciers occur in the Turgen-Kharkhiraa Mountains in the western part of the basin. The basin includes six hydrological and six meteorological stations. The drainage systems within the Zavkhan River basin originate mainly in the Khangai Mountains and flow into Airag Lake (Ochir et al., 2013). The 98,000-km<sup>2</sup> basin is monitored by seven hydrological and five meteorological stations.

In this study, we simulated and validated the daily runoff recorded at 30 hydrological stations for the period 2000–2020 (Figures 1 and S1a). We used the air temperature and precipitation data recorded at 28 meteorological stations in and around the Khovd River, Uvs Lake, and Zavkhan River basins to confirm and calibrate the ERA5 data for the period 1990–2020 (Figures 1 and S1b). We also used the precipitation parameters that were determined in this study and a previous study of four glaciers in the Mongolian Altai Mountains (Khalzan et al., 2022) to calibrate the ERA5 precipitation. Additional details on the hydrological and meteorological stations used in this study and the glaciers studied by Khalzan et al. (2022) are summarized in Tables 1 and 2.

Fig. 2 shows an outline of the data preprocessing and simulation in this study. We first confirmed the reproducibility of the ERA5 temperature and calibrated the ERA5 precipitation values using the observed values at 28 meteorological stations (Hersbach et al., 2020). We then statistically downscaled the ERA5 data from 0.25° to 5-arc-min (~10-km) resolution as the meteorological forcing data for the models. We estimated the meteorological variables via the inverse distance weighing (IDW) method, with an effective radius of 0.2°. The air temperature was calibrated at sea level with the temperature lapse rate (6.0 °C km<sup>-1</sup>) before and after the spatial downscaling. The downward longwave radiation depends on air temperature via the Stefan–Boltzmann equation. A calibration parameter, such as atmospheric emissivity ( $\epsilon_a$ ), can therefore be estimated as a function of air temperature ( $T_a$ , °C) and downward longwave radiation ( $R_{Id}$ , W m<sup>-2</sup>) as follows:

$$\epsilon_a = \frac{R_{Ld}}{\sigma(T_a + 273.15)^4},\tag{1}$$

where  $\sigma$  is the Stefan–Boltzmann constant (5.67 × 10<sup>-8</sup> W m<sup>-2</sup> K<sup>-4</sup>). The estimated atmospheric emissivity was also spatially downscaled, and the downscaled downward longwave radiation was then calculated from the downscaled air temperature via Eq. (1).

#### 2.2. Models

We adopted three models to simulate the river runoff in the three river basins in western Mongolia: (1) a land-surface model (Simple Biosphere including Urban Canopy model, SiBUC) to determine the energy and water balance over the off-glacier terrain, (2) an energy-mass-balance model (GLacIer energy Mass Balance model, GLIMB) to estimate the amount of GMW, and (3) a river

#### Table 2

Overview of the 28 meteorological stations and four glaciers in western Mongolia. SAT and APR denote mean summer temperature and annual precipitation, respectively.  $r_a$  denotes the precipitation ratio to calibrate the ERA5 precipitation. Data of four glaciers are of Khalzan et al. (2022).

| Station name        | Code | Large   | Longitude | Latitude | Elevation  | SAT              | APR          | $r_p$ |
|---------------------|------|---------|-----------|----------|------------|------------------|--------------|-------|
|                     |      | basin   | (°E)      | (°E)     | (m a.s.l.) | (°C)             | (mm)         |       |
| Nogoonnuur          | NG   | Khovd   | 90.248    | 49.614   | 1474       | $17.26 \pm 0.84$ | 85 ± 26      | 0.344 |
| Ulgii               | UL   | Khovd   | 89.970    | 48.970   | 1720       | $16.46 \pm 0.89$ | $117 \pm 29$ | 0.594 |
| Yalalt              | YL   | Khovd   | 89.515    | 48.299   | 2137       | $12.26 \pm 0.81$ | $143 \pm 31$ | 0.471 |
| Khar-Us             | KU   | Khovd   | 91.718    | 49.104   | 1589       | $16.29 \pm 0.93$ | $139 \pm 44$ | 0.665 |
| Bayannuur           | BY   | Khovd   | 91.162    | 48.939   | 1333       | $19.10 \pm 0.78$ | 94 ± 25      | 0.520 |
| Deluun              | DL   | Khovd   | 90.697    | 47.863   | 2150       | $13.31 \pm 0.91$ | $105~\pm~27$ | 0.511 |
| Dund-Us             | DU   | Khovd   | 91.373    | 48.126   | 1711       | $17.04 \pm 0.78$ | $163 \pm 43$ | 0.422 |
| Khovd               | KV   | Khovd   | 91.633    | 47.996   | 1405       | $14.51 \pm 0.90$ | $130~\pm~35$ | 0.680 |
| Chandmani           | CD   | Khovd   | 92.813    | 47.664   | 1661       | $17.58 \pm 1.04$ | $150~\pm~56$ | 0.485 |
| Mankhan             | MK   | Khovd   | 92.224    | 47.420   | 1352       | $19.85 \pm 0.85$ | $76 \pm 25$  | 0.393 |
| Zereg               | ZR   | Khovd   | 92.844    | 47.111   | 1152       | $21.40 \pm 1.28$ | $81 \pm 34$  | 0.275 |
| Monkhkhairkhan      | MO   | Khovd   | 91.853    | 47.065   | 2093       | $14.58 \pm 0.97$ | $145~\pm~18$ | 0.537 |
| Ulaangom            | UG   | Uvs     | 92.069    | 49.972   | 939        | $18.84 \pm 0.93$ | $147 \pm 54$ | 0.503 |
| Tes                 | TS   | Uvs     | 93.601    | 50.476   | 799        | $19.44 \pm 0.93$ | $129~\pm~39$ | 0.575 |
| Malchin             | MC   | Uvs     | 93.269    | 49.729   | 1393       | $16.59 \pm 0.92$ | $263 \pm 79$ | 0.749 |
| Baruunturuun        | BT   | Uvs     | 94.400    | 49.650   | 1234       | $17.58 \pm 1.10$ | $245 \pm 62$ | 0.750 |
| Bayan-Uul           | BU   | Uvs     | 96.363    | 49.700   | 1420       | $15.60 \pm 1.03$ | $195 \pm 40$ | 0.626 |
| Chandagat           | CG   | Uvs     | 97.748    | 49.535   | 1744       | $13.40 \pm 1.05$ | $228~\pm~69$ | 0.698 |
| Ondorkhangai        | OK   | NA      | 94.861    | 49.271   | 1863       | $14.38 \pm 0.69$ | $190 \pm 49$ | 0.494 |
| Nomrog              | NR   | NA      | 96.962    | 48.871   | 1847       | $13.75 \pm 1.01$ | $180~\pm~52$ | 0.724 |
| Tsetsen-Uul         | TU   | NA      | 96.004    | 48.748   | 1927       | $12.63 \pm 1.18$ | $238~\pm~52$ | 0.614 |
| Zavkhanmandal       | ZM   | NA      | 95.099    | 48.325   | 1442       | $17.82 \pm 0.69$ | $138 \pm 37$ | 0.843 |
| Zavkhan             | ZH   | Zavkhan | 93.103    | 48.822   | 1049       | $20.89 \pm 0.99$ | $70 \pm 30$  | 0.618 |
| Dorvoljin           | DR   | Zavkhan | 94.999    | 47.647   | 1391       | $19.26 \pm 1.10$ | 96 ± 45      | 0.732 |
| Uliastai            | US   | Zavkhan | 96.820    | 47.750   | 1391       | $15.59 \pm 1.23$ | $219 \pm 72$ | 0.717 |
| Otgon               | OT   | Zavkhan | 97.605    | 47.210   | 2156       | $12.56 \pm 1.10$ | $161 \pm 51$ | 0.618 |
| Altai               | AT   | Zavkhan | 96.238    | 46.378   | 2180       | $14.29 \pm 1.12$ | $180 \pm 46$ | 0.654 |
| Bayanbulag          | BB   | NA      | 98.087    | 46.812   | 2257       | $12.55 \pm 1.13$ | 146 $\pm$ 50 | 0.510 |
| Potanin Glacier     | PT   | Khovd   | 87.866    | 49.154   | 3650       | $0.00 \pm 0.85$  | $621~\pm~58$ | 0.650 |
| Tsambagarav Glacier | TB   | Khovd   | 90.841    | 48.603   | 3707       | $-0.19 \pm 0.89$ | $248~\pm~39$ | 0.670 |
| Turgen Glacier      | TG   | Uvs     | 91.368    | 49.697   | 3360       | $1.84 \pm 1.01$  | 855 ± 93     | 0.920 |
| Sutai Glacier       | ST   | NA      | 93.615    | 46.629   | 3976       | $0.11~\pm~0.92$  | $190~\pm~39$ | 0.660 |

routing model (Rainfall Runoff Inundation, RRI) to combine the runoff from the SiBUC and GLIMB models. This hybrid approach allows us to account for the sub-grid heterogeneity in glacier and land surface characteristics while maintaining computational feasibility for the large study region (Sadyrov et al., 2024).

## 2.2.1. Land-surface model: SiBUC

We adopted SiBUC, a land-surface model that calculates the water and energy balance in a gridded system (Tanaka, 2005), to simulate the land-surface processes in each basin. The SiBUC model, which is based on the SiB (Sellers et al., 1986) and SiB2 (Sellers et al., 1996) models, calculates the surface processes for several mosaic schemes, such as green areas, water bodies, and urban areas. Here we briefly describe the surface processes over the off-canopy bare ground, which is the major surface condition in western Mongolia. See Tanaka (2005) for further details of the SiBUC model. The ground surface temperature ( $T_g$ ) is estimated by a submodel for the green area to determine the surface flux, and a force-restore model then calculates heat transfer in the soil (Deardorff, 1977). The heat conduction equation is analytically solved by assuming a periodic forcing, and the periodic ground heat flux and deep soil temperature ( $T_d$ ) are then parameterized. This approach allows a feasible representation of temperature dynamics. The governing equations for the ground surface and soil temperatures are as follows:

$$C_g \frac{\partial T_g}{\partial t} = Rn_g + H_S + H_L - \omega C_g (T_g - T_d), \tag{2}$$

where  $C_g$  is the heat capacity for ground soil;  $Rn_g$  is the net radiation absorbed at the ground; and  $H_S$  and  $H_L$  are the sensible and latent heat fluxes, respectively. The absorbed net radiation, which consists of shortwave and longwave radiation, is expressed as follows:

$$Rn_g = (1 - \alpha_g)R_{Sd} + R_{Ld} + \varepsilon_g \sigma (T_g + 273.15)^4, \tag{3}$$

where  $\alpha_g$  is the surface albedo;  $R_{Sd}$  and  $R_{Ld}$  are the downward shortwave and longwave radiation, respectively; and  $\varepsilon_g$  is the emissivity of the surface terrain.

The governing equation for interception water that accumulates on the ground  $(M_g)$  is as follows:

$$\frac{\partial M_g}{\partial t} = P - (P_c - D_c) - P_i - D_g - \frac{E_{wg}}{\rho_w},\tag{4}$$



Fig. 2. Flowchart of the study. T and P denote air temperature and precipitation, respectively.

where *P* is precipitation;  $(P_c - D_c)$  is the water captured by the canopy, which is expressed by the precipitation on the canopy  $(P_c)$ and the water drainage rate from the canopy  $(D_c)$ ;  $P_i$  is the infiltration of precipitation into the upper soil layer;  $D_g$  is the rate of water drainage from the surface;  $E_{wg}$  is evaporation (kg m<sup>-2</sup> s<sup>-1</sup>); and  $\rho_w$  is the density of water (1000 kg m<sup>-3</sup>).

The heat and moisture transfers in the soil are calculated using a three-layer isothermal model that considers hydraulic diffusion and the gravitational drainage of water. The total runoff from green areas  $(R_{grd})$  is determined by summing the surface runoff  $(D_g)$ and baseflow  $(Q_b)$ , which is equivalent to the gravitational drainage from the recharge layer.

The land-cover type affects the energy, radiation, and water budgets. The SiBUC model incorporates a mosaic approach to reflect mixtures of different land-cover types (Tanaka, 2005). The land-surface parameters used in this study include the land-cover fractions dataset (Loveland et al., 2000). The soil parameters were identified using the 1-km (30-arc-sec) ECOCLIMAP dataset (Champeaux et al., 2005). The GTOPO30 (30-arc-sec) dataset was used as the digital elevation model (DEM). All the model parameters were determined using land-surface products, thereby eliminating the need for calibration. The soil characteristic parameters in the SiBUC model are based on (Cosby et al., 1984). The parameters at a 1-km resolution were averaged to a 5-arc-min (~10-km) grid resolution for the SiBUC simulation.

#### 2.2.2. Glacier energy-mass-balance model: GLIMB

Although the SiBUC model calculates snow processes (snow accumulation and melting) over the terrain, it does not consider glaciers, which can produce excess meltwater by ice ablation. We therefore adopted GLIMB, which was previously applied to glaciers in high mountain Asia (Fujita and Ageta, 2000; Fujita and Sakai, 2014), to incorporate glaciological processes into the overall scheme. The surface heat balance ( $Q_m$ ) is calculated as follows:

$$Q_m = Rn_s + H_S + H_L - G_g,\tag{5}$$

where  $Rn_s$  is the net radiation absorbed at the glacier surface, whereby the albedo and surface temperature in Eq. (3) are replaced by those for the glacier surface ( $\alpha_s$  and  $T_s$ , respectively), and  $G_g$  is the conductive heat flux into the glacier ice, which is determined from the temperature profile through the ice. Glacier runoff ( $R_{glc}$ ) is calculated as follows:

$$R_{glc} = \frac{Q_m}{l_m} + P_r + \max\left[\frac{H_L}{l_e}, 0\right] - R_{ref},$$
(6)

where  $l_m$  and  $l_e$  are the latent heat of ice melting and water evaporation, respectively;  $P_r$  is rainfall; and  $R_{ref}$  is refrozen water in the snow layer. Runoff from the glacier is input into the river system through a bucket model that includes two storages (Motoya and Kondo, 1999). Further details of the model can be found in Fujita and Ageta (2000) and Fujita and Sakai (2014).

GLIMB uses daily data as input and has been successful in simulating glacier mass balance and runoff under a variety of climates such as the central (Fujita et al., 2007), northern (Sakai et al., 2009, 2010), and southeastern (Zhang et al., 2016a) Tibet, Tien Shan (Sadyrov et al., 2024), and Patagonia (Minowa et al., 2023). GMW generation is more sensitive to elevation than to horizontal resolution of input variables. Therefore, the GLIMB model calculates glacier runoff at 50-m intervals in elevation. The hypsometry (area-elevation profile) of the glacier surface ( $a_{glc_2}$ , km<sup>2</sup>) is summarized at a 5-arc-min grid (~10-km) resolution using the GAMDAM glacier inventory (Nuimura et al., 2015; Sakai, 2019) and ASTER-GDEM3 (Tachikawa et al., 2011).

## 2.2.3. River runoff model: RRI

We adopted the RRI model, which is a two-dimensional (2-D) model that can simultaneously simulate river runoff and flood inundation (Sayama et al., 2012), to integrate the runoff from the on- and off-glacier terrains and then calculate the river runoff. The RRI model is designed to capture the spatial and temporal variability of runoff and inundation, whereby it considers the effects of both the slope and surface roughness. Note that the model deals with slopes and river channels separately. At a given grid cell in which a river channel is located, the channel is discretized as a single vector along the centerline of the overlying slope grid cell. The channel represents an extra flow path between grid cells lying over the actual river course. Lateral flows are simulated on slope cells (without a channel) on a 2-D basis.

The basin topography inputs, which include the void-filled DEM, a drainage direction map, and a flow accumulation map of the targeted hydrological stations for the RRI simulation, were extracted at a 30-arc-sec (~1-km) resolution from the HydroSHEDS database (Lehner and Grill, 2013). A gridded rainfall dataset is generally used as input for the RRI model. We calculated an integrated runoff dataset at a 5-arc-min (~10-km) resolution in our simulations as follows:

$$R_{x,y} = \frac{R_{grd}A_{grd} + \sum_{z} R_{glc_{z}}a_{glc_{z}}}{A_{grd} + \sum_{z} a_{glc_{z}}},$$
(7)

where  $R_{x,y}$  is the daily runoff depth (mm d<sup>-1</sup>) at a given grid cell,  $R_{glc_z}$  is the daily runoff depth of glacier surface (mm d<sup>-1</sup>) at a given elevation band (z, m above sea level), and  $A_{grd}$  is the area of the glacier-free terrain (km<sup>2</sup>) in a 5-arc-min (~10-km) grid cell. The daily runoff depth on- and off-glacier ( $R_{glc_z}$  and  $R_{grd_z}$ ) are independently calculated by GLIMB and SiBUC. The RRI simulation were performed for the period 1999–2020, and then the first year (1999) output was omitted as a relaxation period.

To evaluate the simulations, we calculated the normalized Nash–Sutcliffe efficiency ( $E_{NNS}$ ) of the simulated runoff using the daily runoff as follows:

$$E_{NS} = 1 - \frac{\sum_{d} (R_{o_d} - R_{m_d})^2}{\sum_{d} (R_{o_d} - \overline{R_o})^2},$$
  

$$E_{NNS} = \frac{1}{2 - E_{NS}},$$
(8)

where  $E_{NS}$  is the Nash–Sutcliffe efficiency;  $R_{o_d}$  and  $R_{m_d}$  are the observed and simulated daily (*d*) runoffs, respectively; and  $\overline{R_o}$  is the annual mean of the observed runoff (Nash and Sutcliffe, 1970). The efficiency, which ranges from 1 to  $-\infty$ , is then normalized to the range between 1 and 0 (Mathevet et al., 2006). For each station,  $E_{NNS}$  was calculated every year for the period 2000–2020, with its mean and standard deviation calculated for years with > 180 days of observed data.

## 3. Results

## 3.1. Performance of the ERA5 data

The 2-m air temperature at the elevation of each meteorological station was extracted from the pressure-level atmospheric air temperatures and geopotential heights in the ERA5 data to confirm the reproducibility of the ERA5 temperatures (Khalzan et al., 2022). Figure S2 shows the ERA5 and observed mean summer temperatures (June–August) for 1990–2020. The root mean square error (RMSE) exceeds 2 °C at two stations (MO and TU) and is <1 °C at 17 of the 28 meteorological stations. These RMSE results indicate that the ERA5 temperature data for western Mongolia are feasible for use in subsequent simulations.

The ERA5 summer precipitation, which are compared for 1990–2020, shows spatially variable biases (Fig. 3). We adopted the slope of the regression line with zero intercept as the precipitation parameter, which we then used to calibrate the ERA5 precipitation. We also included the precipitation parameters that were determined at four glaciers (Khalzan et al., 2022) to calculate the distribution of the precipitation parameter by the IDW method and then downscale the precipitation.



Fig. 3. Comparison of summer precipitations of ERA5 ( $P_E$ , horizontal axes) and observation ( $P_O$ , vertical axes) at the 28 meteorological stations in western Mongolia. Text colors of the station correspond to the large basins (Fig. 1).

#### 3.2. Simulated runoff

Fig. 4 shows climatological means of observed and simulated runoff. Monthly time series for 2000–2020 are shown in Figures S3 and S4. As shown in Fig. 5a, the normalized Nash–Sutcliffe efficiency ( $E_{NNS}$ ) is high in the Khovd River basin (0.725 ± 0.084, ranging between 0.618 and 0.894), moderate in the Uvs Lake basin (0.652 ± 0.092, ranging between 0.546 and 0.791), and lower in the Zavkhan River basin (0.559 ± 0.034, ranging between 0.503 and 0.603) (all the values are summarized in Table 3).  $E_{NNS}$  tends to be lower (<0.7) in the glacier-free basins, even though the seasonal patterns are generally reproduced. The monthly runoff time series (Figures S3 and S4) suggest that the observed period each year seems unnaturally short at the two stations with the lowest  $E_{NNS}$  (SuG and YaY). Figures S3 and S4 also suggest that the interannual variability in runoff seems to be well reproduced for the glacierized catchments, whereas it is poorly reproduced for the glacier-free catchments. The interannual variability in GMW is greater than that in runoff from the glacier-free catchment, and the precipitation parameter is a single value at each station (and then a spatially fixed value), such that the simulated interannual variabilities in runoff are basically due to the interannual variability in ERA5 precipitation. Furthermore, the winter reproducibility in small basins is generally poor because river freezing during winter is not considered in the models.

#### 3.3. Contribution of glacier meltwater to river runoff

Figures 4, S3, and S4 show the contribution of GMW to runoff, which was independently calculated using the GLIMB and RRI models, and runoff in the case of no glaciers, for which runoff integration via Equation (7) was not performed. The seasonal patterns indicate a continuous increase in GMW from mid-May to early June that then drops to almost zero by November. Considering that the GMW contribution becomes more noticeable from June, the increase in river flow from April is directly caused by seasonal snowmelt at lower elevations. GMW seems to contribute to a maximum sustained river runoff from July to August, thereby producing an overall broader runoff pattern. Conversely, the simulation for a glacier-free environment shows a significant decrease in river runoff during summer, with flow peak occurring 1–2 months earlier than in the case with glaciers. Fig. 5b shows the spatial distribution of the GMW contribution (GMW to total runoff in %). The GMW contribution is large at the hydrological stations in the Khovd River basin, as Mongolian glaciers are located mainly in the Altai Mountains. The GMW in the western part of the Uvs Lake basin is from glaciers in the Turgen-Kharkhiraa Mountains (KhS, TuT, and KhT stations).

As a part of validation, we compared the simulated glacier mass balance ( $B_{sim}$ ) with remotely sensed geodetic ones ( $B_{geod}$ ), which were adopted from Hugonnet et al. (2021), for 652 glaciers in western Mongolia (Figure S5). Although the relationship between  $B_{sim}$  and  $B_{geod}$  is not that good, it does not stray too far from the one-to-one relationship. It appears that  $B_{sim}$  slightly overestimates the negative mass balance compared to  $B_{geod}$ . This suggests that the simulated meltwater from individual glaciers could be greater than in reality. However, the area weighted averages (black circle with error cross) seem consistent each other, suggesting that the simulated GMW would be plausible in the catchment scale.

#### Table 3

Observed and simulated river runoff at the 30 hydrological stations in western Mongolia. ANR,  $E_{NNS}$ , GMW, SAT, and APR denote annual mean runoff, normalized Nash–Sutcliffe efficiency, glacier meltwater, mean summer temperature, and annual precipitation, respectively.  $V_{glc}$  denotes glacier meltwater ratio in volume. Subscripts obs, sim, and ngl denote observation, simulation and simulation with no-glacier configuration, respectively.

| Station | ANR <sub>obs</sub>   | ANR <sub>sim</sub>   | $E_{NNS}$         | GMW <sub>sim</sub>               | $V_{glc}$        | ANR <sub>ngl</sub>   | SAT              | APR          |
|---------|----------------------|----------------------|-------------------|----------------------------------|------------------|----------------------|------------------|--------------|
| code    | (m° s <sup>-</sup> ) | (m° s <sup>-</sup> ) |                   | (m <sup>o</sup> s <sup>-</sup> ) | (%)              | (m° s <sup>-</sup> ) | (°C)             | (mm)         |
| TsT     | 9.76 ± 4.04          | $5.46 \pm 0.57$      | $0.78 \pm 0.33$   | $4.01 \pm 0.59$                  | $73.27 \pm 6.65$ | $1.16 \pm 0.33$      | $5.57 \pm 0.79$  | $485~\pm~43$ |
| SoK     | $4.06 \pm 1.24$      | $3.44 \pm 0.53$      | $0.62 \pm 0.11$   | $0.18 \pm 0.03$                  | $5.34 \pm 1.23$  | $3.25 \pm 0.53$      | $7.84 \pm 0.78$  | $382~\pm~44$ |
| KhA     | $2.98 \pm 0.84$      | $2.49~\pm~0.37$      | $0.67 \pm 0.10$   | 0.00                             | 0.00             | $2.49~\pm~0.37$      | $8.42 \pm 0.78$  | $405~\pm~39$ |
| SaB     | $15.77 \pm 4.78$     | $16.02 \pm 1.70$     | $0.76 \pm 0.20$   | $3.33 \pm 0.37$                  | $20.99 \pm 3.26$ | $12.62 \pm 1.71$     | $9.05 \pm 0.77$  | $383~\pm~39$ |
| TuS     | $2.53 \pm 0.67$      | $2.89 \pm 0.25$      | $0.62 \pm 0.19$   | $0.72 \pm 0.08$                  | $25.01 \pm 3.29$ | $2.14 \pm 0.24$      | $9.90 \pm 0.77$  | $293~\pm~40$ |
| KhU     | $59.49 \pm 11.09$    | $56.17 \pm 6.56$     | $0.89 \pm 0.06$   | $17.90 \pm 2.47$                 | $32.25 \pm 5.56$ | $37.86 \pm 6.69$     | $9.72 \pm 0.76$  | $357~\pm~38$ |
| KhB     | $63.44 \pm 16.99$    | $65.59 \pm 6.95$     | $0.86 \pm 0.17$   | $16.96 \pm 2.22$                 | $26.13 \pm 4.29$ | $48.54 \pm 7.16$     | $10.81 \pm 0.76$ | $339~\pm~39$ |
| UaE     | $0.34 \pm 0.06$      | $0.23 \pm 0.06$      | $0.78 \pm 0.07$   | $0.19 \pm 0.06$                  | $83.31 \pm 6.52$ | $0.03 \pm 0.01$      | $3.35 \pm 0.81$  | 493 ± 73     |
| NaO     | $1.58 \pm 0.62$      | $1.52 \pm 0.30$      | $0.68 \pm 0.14$   | $0.16 \pm 0.05$                  | $10.88 \pm 4.54$ | $1.36 \pm 0.32$      | $9.64 \pm 0.82$  | $535 \pm 79$ |
| ChD     | $3.40 \pm 0.84$      | $2.51 \pm 0.37$      | $0.70 \pm 0.10$   | $0.51 \pm 0.07$                  | $20.60 \pm 3.59$ | $1.99 \pm 0.35$      | $8.92 \pm 0.78$  | $336~\pm~33$ |
| GaD     | $3.35 \pm 0.82$      | $3.16 \pm 0.44$      | $0.70 \pm 0.12$   | $0.53 \pm 0.07$                  | $17.10 \pm 2.89$ | $2.62~\pm~0.42$      | $8.91 \pm 0.78$  | $345~\pm~35$ |
| BuD     | $1.71 \pm 0.63$      | $1.30 \pm 0.12$      | $0.67 \pm 0.19$   | $0.32 \pm 0.05$                  | $24.80 \pm 3.10$ | $0.98 \pm 0.10$      | $9.63 \pm 0.77$  | $305 \pm 34$ |
| BuK     | $7.67 \pm 2.05$      | $8.56 \pm 0.99$      | $0.67 \pm 0.27$   | $1.43 \pm 0.18$                  | $16.84 \pm 2.47$ | $7.09 \pm 0.94$      | $10.20 \pm 0.79$ | $315 \pm 35$ |
| KhM     | $85.83 \pm 16.75$    | $82.48 \pm 8.29$     | $0.87 \pm 0.07$   | $20.95 \pm 3.00$                 | $25.59 \pm 4.12$ | $61.37 \pm 8.32$     | $11.35 \pm 0.77$ | $327 \pm 37$ |
| DuM     | $1.81 \pm 0.59$      | $1.90 \pm 0.15$      | $0.71 \pm 0.17$   | $0.73 \pm 0.10$                  | $38.17 \pm 3.67$ | $1.17 \pm 0.10$      | $8.25 \pm 0.8$   | $319~\pm~45$ |
| DoM     | $1.08 \pm 0.51$      | $0.94 \pm 0.07$      | $0.71 \pm 0.17$   | $0.35 \pm 0.05$                  | $36.63 \pm 3.82$ | $0.59 \pm 0.05$      | $7.99 \pm 0.8$   | $315 \pm 44$ |
| ToM     | $3.38 \pm 0.85$      | $3.30 \pm 0.26$      | $0.632 \pm 0.105$ | $0.73 \pm 0.10$                  | $22.19 \pm 2.84$ | $2.56 \pm 0.23$      | $10.89 \pm 0.82$ | $313~\pm~47$ |
| KhS     | $3.04~\pm~0.69$      | $2.98 \pm 0.42$      | $0.732 \pm 0.073$ | $0.55 \pm 0.13$                  | $18.93 \pm 5.42$ | $2.46~\pm~0.45$      | $10.40 \pm 0.77$ | $462~\pm~57$ |
| TuT     | $2.30 \pm 0.83$      | $2.36 \pm 0.50$      | $0.682 \pm 0.260$ | $0.19 \pm 0.05$                  | $8.45 \pm 3.34$  | $2.17 \pm 0.52$      | $10.73 \pm 0.79$ | $589~\pm~82$ |
| KhT     | $4.60 \pm 1.24$      | $4.39 \pm 0.75$      | $0.791 \pm 0.258$ | $0.53 \pm 0.15$                  | $12.73 \pm 4.97$ | $3.85 \pm 0.81$      | $9.05 \pm 0.8$   | 749 ± 97     |
| KgT     | $0.91 \pm 0.50$      | $1.11 \pm 0.28$      | $0.547 \pm 0.219$ | 0.00                             | 0.00             | $1.11 \pm 0.28$      | $12.93 \pm 0.94$ | $372 \pm 66$ |
| BaB     | $1.89 \pm 1.02$      | $1.72 \pm 0.45$      | $0.546 \pm 0.278$ | 0.00                             | 0.00             | $1.72 \pm 0.45$      | $14.70 \pm 0.93$ | $395~\pm~70$ |
| TbU     | $14.38 \pm 6.42$     | $14.09 \pm 2.19$     | $0.61 \pm 0.28$   | 0.00                             | 0.00             | $14.09 \pm 2.19$     | $13.30 \pm 0.91$ | $378~\pm~59$ |
| YaY     | $2.33 \pm 0.37$      | $0.93 \pm 0.23$      | $0.53 \pm 0.05$   | 0.00                             | 0.00             | $0.93 \pm 0.23$      | $12.41 \pm 0.93$ | $374~\pm~66$ |
| ChU     | $2.84 \pm 1.37$      | $2.44 \pm 0.64$      | $0.57 \pm 0.09$   | $0.03 \pm 0.01$                  | $1.41 \pm 0.48$  | $2.40 \pm 0.64$      | $10.65 \pm 0.91$ | $395 \pm 70$ |
| BoU     | $8.47 \pm 4.34$      | $7.27 \pm 1.95$      | $0.56 \pm 0.17$   | $0.07 \pm 0.02$                  | $1.02 \pm 0.36$  | $7.19 \pm 1.95$      | $11.01 \pm 0.92$ | $387~\pm~70$ |
| SuG     | $1.02 \pm 0.85$      | $1.10 \pm 0.14$      | $0.50 \pm 0.31$   | 0.00                             | 0.00             | $1.10 \pm 0.14$      | $10.33 \pm 0.86$ | $305~\pm~61$ |
| BuO     | $7.29 \pm 5.25$      | $6.35 \pm 0.94$      | $0.60 \pm 0.26$   | $0.01 \pm 0.00$                  | $0.14 \pm 0.04$  | $6.34 \pm 0.94$      | $9.92 \pm 0.87$  | $327~\pm~56$ |
| ZaG     | $12.74 \pm 6.36$     | $7.27 \pm 1.09$      | $0.55 \pm 0.11$   | $0.01 \pm 0.00$                  | $0.10 \pm 0.03$  | $7.26 \pm 1.09$      | $10.79 \pm 0.88$ | $303~\pm~55$ |
| ZaD     | $20.07\pm10.88$      | $17.90 \pm 3.11$     | $0.60 \pm 0.24$   | $0.02 \pm 0.01$                  | $0.12 \pm 0.04$  | $18.03 \pm 3.12$     | $14.03 \pm 0.91$ | $264~\pm~53$ |

Fig. 6 shows the relationships of runoff indices (GMW contribution, coefficient of variation (CV) of the annual runoff, and runoff coefficient (RC)) against the glacier area ratio at all stations (data listed in Tables 3 and S1). If the glaciers were in equilibrium (in terms of mass balance) and the amount of precipitation was constant at given elevation, then the GMW contribution should be either approximately equal to the glacier area ratio (plotted as the one-to-one line in Fig. 6a) or less due to evaporation. The power functional relationship in the figure suggests that glaciers at higher elevations receive much more precipitation and consequently provide more meltwater due to their long-lasting negative mass balance (Khalzan et al., 2022). Fig. 6b shows coefficient of variation (CV) of annual runoff, which is obtained by the standard deviation of annual runoff divided by its long-term mean (both for the 21 years), against the glacier area ratio. Observation-based ( $CV_{obs}$ ) and simulated ( $CV_{sim}$ ) CVs decrease with the glacier area ratio. A CV of the non-glacier configuration ( $CV_{ngl}$ ) seems independent from the glacier area ratio (practically zero for all catchments). The difference between  $CV_{sim}$  and  $CV_{ngl}$  indicates the role of GMW for inter-annual variability of river runoff. Fig. 6c shows the runoff coefficient (RC), which is obtained by the area averaged runoff depth divided by annual precipitation, against the glacier area ratio. The large differences between  $RC_{sim}$  and  $RC_{ngl}$  along the glacier area ratio suggests that only 10% of precipitation could be available for the river runoff if no glacier exists due to the arid environment, and the large part of the river runoff is supplied as GMW in western Mongolia.

## 3.4. Controlling factors of glacier-affected river runoff

We simulated multiple basins with different glacier contributions, ranging from glacier-free basins to those with a glacier area ratio of up to 10% and a volume-based GMW contribution of 83% at Ulaan am Erdeneburen station (UaE). Here we investigate how these differences in glacier contribution affect the relationship between meteorological factors (temperature and precipitation) and annual fluctuations in river runoff by analyzing the correlations among these parameters and the impact of extreme events.

#### 3.4.1. Interannual variability

We first obtained the annual mean of the mean summer temperature and annual amount of precipitation for each simulated basin from the ERA5-calibrated daily temperature and precipitation data. The number of grid cells of the targeted catchment (30-arc-sec or 1-km resolution) that were included in an input forcing grid cell (5-arc-min or 10-km resolution) were counted and then weighted during the averaging procedure. We then calculated the correlation coefficients between the meteorological forcing (mean summer temperature and annual precipitation) and the annual runoff. For the observational data, we selected the nearest meteorological



Fig. 4. Seasonal patterns of observational (black) and simulated (blue) daily runoff at the 30 hydrological stations in western Mongolia. Purple and brown lines denote glacier meltwater (GMW) and runoff without glacier configuration, respectively.  $E_{NNS}$ ,  $A_{glc}$ , and  $V_{glc}$  denote the normalized Nash–Sutcliffe efficiency, glacier area ratio (%), and GMW contribution (%), respectively.

station for each hydrological station, and then obtained the correlation coefficients (Table S2). The corresponding meteorological and hydrological stations are also summarized in the table.

Fig. 7 shows that the glacier-free catchments do not exhibit a correlation between mean summer temperature or annual precipitation and river runoff. However, the runoff in the catchments where the GMW contribution is <20% shows highly negative correlations to mean summer temperature (Fig. 7a) and positive ones to annual precipitation (Fig. 7b), respectively. Increasing GMW contribution causes the correlations to increase toward positive correlations with mean summer temperature and to decrease toward no correlation with annual precipitation (Fig. 7a and b). The correlations among the observational data exhibit a similar relationship to that of the simulations with annual precipitation (Fig. 7d), whereas that with mean summer temperature is unclear (Fig. 7c).

A positive correlation is generally expected between precipitation and runoff in glacier-free catchments. Furthermore, the mean summer temperature is expected to have a negative correlation with runoff through evaporation. However, glaciers yield an opposite response. More GMW is generated as the temperature increases, whereas an increase in precipitation would suppress surface melting by changing the surface heat balance due to high-albedo snow. The relationships shown in Fig. 7 support these opposite processes in glacierized and glacier-free catchments. Unlike the above explanation, the runoff response to precipitation seems unclear in glacier-affected catchments, except for the largest catchment. This unclear contribution of the glacier response to precipitation might reflect the fact that in a sufficiently warm environment, most of the precipitation falls as rain, which is not expected to suppress melting. This interpretation is supported by the results of a previous study of four Mongolian glaciers, whereby the correlations between mean summer temperature and glacier mass balance were very high (-0.87 to -0.96), whereas those between annual precipitation and glacier mass balance were moderate (0.54 to 0.78) (Khalzan et al., 2022). Of note, these correlations are with regard to glacier mass balance, such that the signs of the correlations are the opposite to those with GMW. The relationship between the correlation coefficient and GMW contribution is rather unclear among the observational data (Fig. 7c and d). This may be due to the temperature and precipitation observations being point data from a nearby station, such that their spatial variabilities in the catchment are not taken into account.

## 3.4.2. Extreme cases

We first calculated the runoff anomalies for the three most extreme years based on annual precipitation and mean summer temperature, which were normalized by dividing by the interannual variability (standard deviation) in each parameter. We also



Fig. 5. (a) Normalized Nash–Sutcliffe efficiency ( $E_{NNS}$ ) and (b) volume-based glacier meltwater contribution to river runoff ( $V_{glc}$ ) at the 30 hydrological stations in western Mongolia.

calculated the corresponding annual runoff anomalies, and then quantitatively evaluated how fluctuations in the forcing variables affect river runoff (data listed in Table S3).

Fig. 8a and b show the runoff responses to precipitation extremes. Many catchments received about  $1.7\sigma$  more precipitation during the three wettest years (Fig. 8a), whereas they received about  $1.4\sigma$  less precipitation during the three driest years (Fig. 8b). This is probably because western Mongolia has an arid climate. The runoff anomalies are not significant in the glacier-free



**Fig. 6.** Relationships of (a) volume-based glacier meltwater contribution  $(V_{glc})$ , (b) coefficient of variation of the annual runoff (CV), and (c) runoff coefficient (RC) against glacier area ratio  $(A_{glc})$  and of the 30 catchments in western Mongolia. Subscripts glc, obs, sim, ngl, and prv denote glacier, observation, simulation, simulation with no-glacier configuration, and previous study by Zhang et al. (2016b), respectively. Data for the figure are listed in Table 3 and S1.



Fig. 7. Correlation coefficients of the annual runoff to (a) and (c) mean summer temperature (SAT), and (b) and (d) annual precipitation (APR) against the glacier meltwater contribution  $(V_{glc})$  in terms of (a) and (b) simulation and ERA5, and (c) and (d) observational data at the 30 catchments in western Mongolia. For obtaining the fitting curves, data with  $V_{glc} < 2\%$  were excluded. Values are listed in Table S2.

catchments. However, with increasing GMW contribution, the runoff anomaly tends to respond oppositely to the precipitation anomalies for both wet and dry extremes.

Fig. 8c and d show the effects of the temperature extremes. Under the warming situation (e.g. Cai et al., 2024), the mean summer temperature was  $1.7\sigma$  colder during the three coldest summers (Fig. 8c) and  $1.4\sigma$  warmer during the three warmest summers (Fig. 8d). The runoff responses are equivocal in the glacier-free catchments, as in the cases of extreme precipitation anomalies. Increasing



Fig. 8. Normalized anomaly of annual runoff (R), annual precipitation (APR), and mean summer temperature (SAT) in the extreme three years of (a) wet, (b) dry, (c) cold, and (d) warm for the 30 catchments in western Mongolia. For obtaining the fitting curves, data with  $V_{glc} < 2\%$  were excluded. Values are listed in Table S3.

GMW contribution leads to a shift in the runoff anomaly during a cold anomaly from positive to negative (Fig. 8c), while it is unclear for the warm extremes (Fig. 8d).

## 4. Discussion

In glacier affected catchments, the GMW increases from May and contributes to sustain the river runoff from July to August (Fig. 4). This has been pointed out by Pan et al. (2019) though no quantitative evaluation was given. Considering the decrease in seasonal snow as a result of global warming, which is not considered in the simulation, it is expected that the peak runoff would decrease and the peak timing would appear earlier in the coming decades.

The estimated contribution of GMW to river runoff at Khovd Ulgii station (KhU) was  $32.25\% \pm 5.56\%$  in this study, which is much higher than the estimate of 8%–18% by the only previous study that evaluated the contribution of GMW to river runoff in western Mongolia (Pan et al., 2019). Pan et al. (2019) assumed a mass-balance gradient of 5.0 m water equivalent (w.e.) km<sup>-1</sup>, whereas (Khalzan et al., 2022) proposed a physically estimated gradient of 6.4 m w.e. km<sup>-1</sup>. Furthermore, Khalzan et al. (2022) noted and incorporated the high precipitation gradient with increasing elevation (40% km<sup>-1</sup>), which was not considered by Pan et al. (2019).

For all panels of Fig. 6, power functional fitting curves reported in a previous study for glacierized catchments in Tien Shan are depicted (Zhang et al., 2016b). This study was selected for comparison because the Tien Shan region is geographically close to, and has a similar climate to, western Mongolia. In addition, Zhang et al. (2016b) simulated multiple catchments, making it suitable for comparing the characteristics of glacier meltwater contributions. The fitting curves suggest that the GMW contribution in western Mongolia is much greater than that calculated for the 24 catchments in Tien Shan (Fig. 6a). The coefficients of determination ( $R^2$ ) for the coefficient of variations ( $CV_{obs}$  and  $CV_{sim}$ ) are worse than that of Zhang et al. (2016b) (Fig. 6b), probably because Zhang et al. (2016b) calibrated their runoff parameters to fit the observed runoff. The runoff coefficient of this study ( $RC_{sim}$ ) is less than that of Zhang et al. (2016b) (Fig. 6c), probably due to more arid environment in western Mongolia than that in Tien Shan.

The precipitation parameter is determined as a single value at each station (Fig. 3) and then a spatially fixed value. It means that the simulated interannual variabilities in runoff in glacier-free catchment are basically due to the interannual variability in ERA5 precipitation. The power functional fitting curve for CV (Fig. 6b) suggests that glaciers would contribute to suppress the interannual variability of river runoff through supplying more meltwater during the dry condition and vice versa. Similarly, the responses of runoff to precipitation and temperature extremes are explainable by those of glaciers; more meltwater in arid and warmer conditions

and vice versa (Fig. 8). These analyses suggest that the presence of glaciers could mitigate the deficit in river runoff by supplying meltwater during drought conditions and thus suppress the interannual variability of river runoff (e.g. Zhang et al., 2016b; Pritchard, 2019).

The temporal changes in runoff show that the simulation does not well reproduce the long-term trend and intermittent large runoff events (Figures S3 and S4), probably because the ERA5 precipitation would not have good representativeness in this region for both long-term trend and events. The continuous shrinking glaciers could also affect the trend (Pan et al., 2019). However, the uncertainty in the GMW estimate is much greater than the glacier area change. In our simulations, accumulation, seasonal snowmelt, and the influence of permafrost on basal flow, which are not calibrated to the studied catchments, may explain the poor reproducibility of runoff in the glacier-free catchments.

## 5. Conclusions

This study is the first to undertake modeling of glacier-fed rivers in Mongolia using physically based models. We used the temperature and precipitation data from 28 meteorological stations across western Mongolia to calibrate the ERA5 reanalysis data and the runoff data from 30 hydrological stations to validate the simulated runoffs. There was a high reproducibility of the simulated runoffs in the Khovd River basin, which holds many glaciers, compared with the simulated runoffs in the Uvs Lake and Zavkhan River basins, where fewer glaciers are present. We consider the lack of permafrost-related hydrology in the models as one of the causes of the poorer reproducibility in the latter two basins. The volume-based glacier meltwater contributions were significantly larger than the glacier-area-based contributions, which suggests additional water supply from the shrinking glaciers and greater precipitation at higher elevations. Correlation analyses regarding the effects of air temperature and precipitation on river runoff were also conducted for the glacierized and glacier-free basins. Warming contributed to increased runoff in glacier-fed basins, and reduced runoff in glacier-free basins. Conversely, drought contributed to reduced runoff in glacier-free basins, whereas it could potentially increase glacier meltwater and consequently compensate for the decreased runoff in glacierized basins.

The results show that glaciers can modulate the response of river flow to climate change. These results provide a scientific basis for implementing integrated water resources management, including mitigation and adaptation plans for water resources, and gaining important insights into the hydrological dynamics of the region. Furthermore, the presented simulation scheme can be employed to evaluate changes in river runoff for future climate-change scenarios. This study highlights the need to further improve existing land-surface process and runoff models, as well as expand the network of meteorological, hydrological, and glacier observations, to better guide water resources management in a warming climate. On the other hand, it should be noted that the utilization of three distinct numerical models in this study introduced inherent limitations in computational efficiency, predictive accuracy, and comprehensive system-level analysis. To unveil critical synergistic effects between subsystems, further investigation for employing an integrated modeling framework is needed.

## CRediT authorship contribution statement

**Purevdagva Khalzan:** Writing – original draft, Validation, Investigation, Formal analysis, Data curation. **Sanjar Sadyrov:** Writing – review & editing, Methodology. **Akiko Sakai:** Writing – review & editing, Project administration, Investigation, Funding acquisition, Conceptualization. **Kenji Tanaka:** Writing – review & editing, Methodology. **Koji Fujita:** Writing – original draft, Visualization, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization.

## Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

## Acknowledgments

The authors would thank anonymous reviewers for their valuable inputs and reviews. This study is supported by JSPS, Japan-KAKENHI (JP20H00196 and JP25H00507) and the Transnational Doctoral Program for Leading Professionals in Asian Countries in Nagoya University, Japan.

## Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.ejrh.2025.102375.

## Data availability

Monthly meteorological and hydrological observational data are available at https://doi.org/10.5281/zenodo.14729735 (Khalzan and Fujita, 2025). ERA5 reanalysis data are obtained from the Copernicus Climate Data Store (https://cds.climate. copernicus.eu/, last access: 8 May 2025). GTOPO30 data is obtained from the Earth Resources Observation and Science (EROS) Center (https://doi.org/10.5066/F7DF6PQS, last access: 8 May 2025).

#### References

- Antokhina, O.Y., Latysheva, I.V., Mordvinov, V.I., 2019. A cases study of Mongolian cyclogenesis during the July 2018 blocking events. Geogr. Environ. Sustain. 12 (3), 66–78. https://doi.org/10.24057/2071-9388-2019-14.
- Bantcev, D.V., Ganyushkin, D.A., Chistyakov, K.V., Volkov, I.V., Ekaykin, A.A., Veres, A.N., Tokarev, I.V., Shtykova, N.B., Andreeva, T.A., 2019. The components of the glacial runoff of the Tsambagarav massif from stable water isotope data. Geosciences 9 (7), 297. https://doi.org/10.3390/geosciences9070297.

Batimaa, P., Myagmarjav, B., Batnasan, N., Jadambaa, N., Khishigsuren, P., 2011. Urban water vulnerability to climate change in Mongolia.

Batsukh, N., Dorjsuren, D., Batsaikhan, G., 2008. The water resources, use and conservation in Mongolia (First national report). In: Report Prepared for the National Water Committee of Mongolia. Mongolian Ministry of Nature and Environment, Ulaanbaatar.

- Cai, Q., Chen, W., Chen, S., Xie, S.-P., Piao, J., Ma, T., Lan, X., 2024. Recent pronounced warming on the Mongolian Plateau boosted by internal climate variability. Nat. Geosci. 17 (3), 181–188. https://doi.org/10.1038/s41561-024-01377-6.
- Champeaux, J.L., Masson, V., Chauvin, F., 2005. ECOCLIMAP: A global database of land surface parameters at 1 km resolution. Meteorol. Appl. 12 (1), 29–32. https://doi.org/10.1017/S1350482705001519.
- Cosby, B., Hornberger, G., Clapp, R., Ginn, T., 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 20 (6), 682–690. https://doi.org/10.1017/S1350482705001519.
- Dashdeleg, N., Evilkhaan, R., Khishigsuren, P., 1983. Modern glaciers in the Altai Mountains. Proc. Inst. Meteorol. Hydrol. 8, 121-126.
- Davaa, G., 2010. Climate change impact on water resources in Mongolia. pp. 30-36.
- Deardorff, J.W., 1977. A parameterization of ground-surface moisture content for use in atmospheric prediction models. J. Appl. Meteorol. 16 (11), 1182–1185.
- Dgebuadze, Y., Batnasan, N., Berdovskaya, G., Verzilin, N., Devyatkin, E., Dorofeyuk, N., Dulmaa, A., Egorov, A., Kalmykova, N., Korneva, L., Kosolapova, N., Krylov, A., Kulikovsky, M., Liiva, A., Luvsandorzh, N., Martinson, G., Mensaikhan, B., Neustrueva, I., Nikolaeva, T., Petukhov, V., Ponomarenko, A., Przhiboro, A., Prokin, A., Rasskazov, A., Sanchir, G., Sevastyanov, D., Skvortsov, V., Hand, Y., Tsarenko, P., Tsugar, S., Tseresodnom, J., Tsetsegmaa, D., Chebotarev, E., Shuvalov, V., 2014. Lynmology and paleolymnology of Mongolia.
- Fujita, K., Ageta, Y., 2000. Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model. J. Glaciol. 46 (153), 244–252. https://doi.org/10.3189/172756500781832945.
- Fujita, K., Ohta, T., Ageta, Y., 2007. Characteristics and climatic sensitivities of runoff from a cold-type glacier on the Tibetan Plateau. Hydrol. Process. 21 (21), 2882–2891. https://doi.org/10.1002/hyp.6505.
- Fujita, K., Sakai, A., 2014. Modelling runoff from a Himalayan debris-covered glacier. Hydrol. Earth Syst. Sci. 18 (7), 2679–2694. https://doi.org/10.5194/hess-18-2679-2014.
- Garmaev, E.Z., Bolgov, M., Ayurzhanaev, A., Tsydypov, B., 2019. Water resources in Mongolia and their current state. Russ. Meteorol. Hydrol. 44 (10), 659–666. https://doi.org/10.3103/S1068373919100030.
- Grunert, J., Lehmkuhl, F., Walther, M., 2000. Paleoclimatic evolution of the Uvs Nuur basin and adjacent areas (Western Mongolia). Quat. Int. 65–66, 171–192. https://doi.org/10.1016/S1040-6182(99)00043-9.
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J.-N., 2020. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146 (730), 1999–2049. https://doi.org/10.1002/qj.3803.
- Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., Kääb, A., 2021. Accelerated global glacier mass loss in the early twenty-first century. Nature 592 (7856), 726–731. https://doi.org/10.1038/s41586-021-03436-z.
- Kadota, T., Davaa, G., 2007. Recent glacier variations in Mongolia. Ann. Glaciol. 46, 185–188. https://doi.org/10.3189/172756407782871675.
- Kadota, T., Davaa, G., Khalzan, P., Davaadorj, N., Ohata, T., 2011. Glaciological research in the Mongolian Altai, 2003–2009. Bull. Glaciol. Res. 29, 41–50. https://doi.org/10.5331/bgr.29.41.
- Kamp, U., McManigal, K.G., Dashtseren, A., Walther, M., 2013. Documenting glacial changes between 1910, 1970, 1992 and 2010 in the Turgen Mountains, Mongolian Altai, using repeat photographs, topographic maps, and satellite imagery. Geogr. J. 179 (3), 248–263. https://doi.org/10.1111/j.1475-4959.2012. 00486.x.
- Kamp, U., Pan, C.G., 2015. Inventory of glaciers in Mongolia, derived from landsat imagery from 1989 to 2011. Geogr. Ann.: Ser. A, Phys. Geogr. 97 (4), 653–669. https://doi.org/10.1111/geoa.12105.
- Khalzan, P., Fujita, K., 2025. Meteorological, hydrological, and glaciological data in western Mongolia. https://doi.org/10.5281/zenodo.14729735.
- Khalzan, P., Sakai, A., Fujita, K., 2022. Mass balance of four Mongolian glaciers: In-situ measurements, long-term reconstruction and sensitivity analysis. Front. Earth Sci. 9, 785306. https://doi.org/10.3389/feart.2021.785306.
- Konya, K., Kadota, T., Nakazawa, F., Davaa, G., Khalzan, P., Ohata, T., 2010. Surface mass balance of the Potanin Glacier in the Mongolian Altai Mountains and comparison with Russian Altai glaciers in 2005, 2008, and 2009. Bull. Glaciol. Res. 31, 9–18. https://doi.org/10.5331/bgr.31.9.
- Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Geogr. Environ. Sustain. 15 (3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130.
- Lehner, B., Grill, G., 2013. Global river hydrography and network routing: Baseline data and new approaches to study the world's large river systems. Hydrol. Process. 27 (15), 2171–2186. https://doi.org/10.1002/hyp.9740.
- Loveland, T.R., Reed, B.C., Brown, J.F., Ohlen, D.O., Zhu, Z., Yang, L., Merchant, J.W., 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 21 (6–7), 1303–1330. https://doi.org/10.1080/014311600210191.
- Mathevet, T., Michel, C., Andréassian, V., Perrin, C., 2006. A bounded version of the Nash-sutcliffe criterion for better model assessment on large sets of basins. IAHS Publ. 307, 211–219.
- Minowa, M., Skvarca, P., Fujita, K., 2023. Climate and surface mass balance at Glaciar Perito Moreno, southern Patagonia. J. Clim. 36 (2), 625-641. https://doi.org/10.1175/JCLI-D-22-0294.1.
- Motoya, K., Kondo, J., 1999. Estimating the seasonal variations of snow water equivalent, runoff and water temperature of a stream in a basin using the new bucket model. J. Jpn. Soc. Hydrol. Water Resour. 12 (5), 391–407. https://doi.org/10.3178/jjshwr.12.391.
- Munkhbat, B., Gomboluudev, P., Erdenesukh, S., Sandelger, D., 2022. To estimate air temperature and precipitation of mongolia (1991–2020) for the high-resolution grid using ANUSPLIN statistical model. Geogr. Issues 22 (1), 92–102.
- Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I a discussion of principles. J. Hydrol. 10 (3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
- Nuimura, T., Sakai, A., Taniguchi, K., Nagai, H., Lamsal, D., Tsutaki, S., Kozawa, A., Hoshina, Y., Takenaka, S., Omiya, S., Tsunematsu, K., Tshering, P., Fujita, K., 2015. The GAMDAM glacier inventory: A quality-controlled inventory of Asian glaciers. Cryosphere 9 (3), 849–864. https://doi.org/10.5194/tc-9-849-2015.
- Ochir, A., Munkhjargal, M., Bat-Erdene, A., Tsetsgee, S., 2013. Zavkhan river and its catchment area delineation using satellite image. J. Water Resour. Prot. 5 (10), 38237. https://doi.org/10.4236/jwarp.2013.510095.
- Orkhonselenge, A., Harbor, J.M., 2018. Impacts of modern glacier changes on surface water resources in western and northern Mongolia. J. Water Resour. Prot. 10 (6), 85579. https://doi.org/10.4236/jwarp.2018.106031.

- Pan, C.G., Kamp, U., Munkhjargal, M., Halvorson, S.J., Dashtseren, A., Walther, M., 2019. An estimated contribution of glacier runoff to Mongolia's Upper Khovd River Basin in the Altai Mountains. Mt. Res. Dev. 39 (2), R12–R20. https://doi.org/10.1659/MRD-JOURNAL-D-18-00059.1.
- Pan, C.G., Pope, A., Kamp, U., Dashtseren, A., Walther, M., Syromyatina, M.V., 2018. Glacier recession in the Altai Mountains of Mongolia in 1990–2016. Geogr. Ann.: Ser. A, Phys. Geogr. 100 (2), 185–203. https://doi.org/10.1080/04353676.2017.1407560.
- Pritchard, H.D., 2019. Asia's shrinking glaciers protect large populations from drought stress. Nature 569 (7758), 649-654. https://doi.org/10.1038/s41586-019-1240-1.
- Sadyrov, S., Tanaka, K., Satylkanov, R., Khujanazarov, T., Touge, Y., Fujita, K., 2024. Modelling runoff components and hydrological processes in glaciated catchments of the inner Tien-Shan, Kyrgyzstan. Front. Earth Sci. 11, 1306476. https://doi.org/10.3389/feart.2023.1306476.
- Sakai, A., 2019. Brief communication: Updated GAMDAM glacier inventory over high-mountain Asia. Cryosphere 13 (7), 2043–2049. https://doi.org/10.5194/tc-13-2043-2019.
- Sakai, A., Fujita, K., Nakawo, M., Yao, T., 2009. Simplification of heat balance calculation and its application to the glacier runoff from the July 1st Glacier in northwest China since the 1930s. Hydrol. Process. 23 (4), 585–596. https://doi.org/10.1002/hyp.7187.
- Sakai, A., Fujita, K., Narama, C., Kubota, J., Nakawo, M., Yao, T., 2010. Reconstructions of annual discharge and equilibrium line altitude of glaciers at Qilian Shan, northwest China, from 1978 to 2002. Hydrol. Process. 24 (19), 2798–2806. https://doi.org/10.1002/hyp.7700.
- Sato, T., Tsujimura, M., Yamanaka, T., Iwasaki, H., Sugimoto, A., Sugita, M., Kimura, F., Davaa, G., Oyunbaatar, D., 2007. Water sources in semiarid northeast Asia as revealed by field observations and isotope transport model. J. Geophys. Res.: Atmospheres 112 (D17), D17112. https://doi.org/10.1029/2006JD008321.
- Sayama, T., Ozawa, G., Kawakami, T., Nabesaka, S., Fukami, K., 2012. Rainfall-runoff-inundation analysis of the 2010 Pakistan flood in the Kabul River basin. Hydrol. Sci. J. 57 (2), 298–312. https://doi.org/10.1080/02626667.2011.644245.
- Sellers, P., Mintz, Y., Sud, Y., Dalcher, A., 1986. A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci. 43 (6), 505–531. https://doi.org/10.1175/1520-0469(1986)043.
- Sellers, P., Randall, D., Collatz, G., Berry, J., Field, C., Dazlich, D., Zhang, C., Collelo, G., Bounoua, L., 1996. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Clim. 9 (4), 676–705. https://doi.org/10.1175/1520-0442(1996)009.
- Syromyatina, M., Kurochkin, Y., Bliakharskii, D., Chistyakov, K., 2015. Current dynamics of glaciers in the Tavan Bogd Mountains (Northwest Mongolia). Environ. Earth Sci. 74, 1905–1914. https://doi.org/10.1007/s12665-015-4606-1.
- Tachikawa, T., Hato, M., Kaku, M., Iwasaki, A., 2011. Characteristics of ASTER GDEM version 2. In: In 2011 IEEE International Geoscience and Remote Sensing Symposium. IEEE, pp. 3657–3660. https://doi.org/10.1109/IGARSS.2011.6050017.
- Tanaka, K., 2005. Development of the new land surface scheme SiBUC commonly applicable to basin water management and numerical weather prediction model (Ph.D. thesis). Kyoto University, Kyoto, Japan.
- Zhang, Y., Enomoto, H., Ohata, T., Kitabata, H., Kadota, T., Hirabayashi, Y., 2017. Glacier mass balance and its potential impacts in the Altai Mountains over the period 1990–2011. J. Hydrol. 553, 662–677. https://doi.org/10.1016/j.jhydrol.2017.08.026.
- Zhang, Y., Hirabayashi, Y., Fujita, K., Liu, S., Liu, Q., 2016a. Heterogeneity in supraglacial debris thickness and its role in glacier mass changes of the Mount Gongga. Sci. China Earth Sci. 59, 170–184. https://doi.org/10.1007/s11430-015-5118-2.
- Zhang, Y., Luo, Y., Sun, L., Liu, S., Chen, X., Wang, X., 2016b. Using glacier area ratio to quantify effects of melt water on runoff. J. Hydrol. 538, 269–277. https://doi.org/10.1016/j.jhydrol.2016.04.026.

# Supporting Information for "Glacier meltwater contribution to river runoff in Western Mongolia"

Purevdagva Khalzan<sup>a,b</sup>, Sanjar Sadyrov<sup>c,d</sup>, Akiko Sakai<sup>b</sup>, Kenji Tanaka<sup>d</sup>, Koji Fujita<sup>b</sup>

 <sup>a</sup>Information and Research Institute of Meteorology Hydrology and Environment, Ulaanbaatar, 15160, Mongolia
 <sup>b</sup>Graduate School of Environmental Studies, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
 <sup>c</sup>Mountain Societies Research Institute, University of Central Asia, Bishkek, 720001, Kyrgyzstan
 <sup>d</sup>Disaster Prevention Research Institute, Kyoto University, Uji, 611-0011, Japan



Figure S1: a) Hydrological stations, and b) meteorological stations and glaciers in western Mongolia. Details of the stations including abbreviation are listed in Tables 1 and 2.



Figure S2: Comparison of mean summer temperatures of ERA5 ( $T_E$ , horizontal axes) and observation ( $T_O$ , vertical axes) at the 28 meteorological stations in western Mongolia. Text colors of the station correspond to the large basins (Figure 1).



Figure S3: Observed (black) and simulated (blue) monthly mean runoff at the 30 hydrological stations in western Mongolia. Purple and brown lines denote glacier meltwater and runoff without glacier configuration, respectively. Text colors correspond to those for the large basins (Figure 1).







Figure S5: Simulated (B<sub>sim</sub>) and remotely sensed geodetic (B<sub>geod</sub>) mass balance of 652 glaciers in western Mongolia averaged for the period 2000-2020. B<sub>geod</sub> are adopted from Hugonnet et al. (2021). Purple line denotes a linear regression (R<sup>2</sup> = 0.027,  $p < 10^{-4}$ ). Black circle with error cross denotes the area-weighted mean and their standard deviation (1 $\sigma$ ) for all glaciers.

| $\frac{1}{2}$ , dis, and ngl deno | te observat                  | tion, simu                   | lation and                   | l simulation wi   | th no-glacier configurati    |
|-----------------------------------|------------------------------|------------------------------|------------------------------|-------------------|------------------------------|
| Station code                      | $\mathrm{CV}_{\mathrm{obs}}$ | $\mathrm{CV}_{\mathrm{sim}}$ | $\mathrm{CV}_{\mathrm{ngl}}$ | $ m RC_{sim}$     | $\mathrm{RC}_{\mathrm{ngl}}$ |
| TsT                               | 0.41                         | 0.10                         | 0.28                         | $0.61 \pm 0.09$   | $0.13\pm0.03$                |
| $\mathrm{SoK}$                    | 0.31                         | 0.15                         | 0.16                         | $0.16 \pm 0.02$   | $0.15\pm0.02$                |
| KhA                               | 0.28                         | 0.15                         | 0.15                         | $0.06 \pm 0.01$   | $0.06 \pm 0.01$              |
| $\operatorname{SaB}$              | 0.30                         | 0.11                         | 0.14                         | $0.28 \pm 0.04$   | $0.22 \pm 0.03$              |
| TuS                               | 0.26                         | 0.09                         | 0.11                         | $0.10 \pm 0.02$   | $0.07{\pm}0.01$              |
| KhU                               | 0.19                         | 0.12                         | 0.18                         | $0.20 \pm 0.03$   | $0.13 \pm 0.02$              |
| KhB                               | 0.27                         | 0.11                         | 0.15                         | $0.15 \pm 0.02$   | $0.11 {\pm} 0.01$            |
| UaE                               | 0.16                         | 0.26                         | 0.26                         | $0.68 \pm 0.25$   | $0.10{\pm}0.03$              |
| NaO                               | 0.39                         | 0.20                         | 0.23                         | $0.15 \pm 0.01$   | $0.14{\pm}0.02$              |
| ChD                               | 0.25                         | 0.15                         | 0.18                         | $0.11 \pm 0.02$   | $0.09 \pm 0.02$              |
| GaD                               | 0.24                         | 0.14                         | 0.16                         | $0.08 \pm 0.01$   | $0.07{\pm}0.01$              |
| BuD                               | 0.37                         | 0.09                         | 0.10                         | $0.12 \pm 0.02$   | $0.09 \pm 0.01$              |
| BuK                               | 0.27                         | 0.12                         | 0.13                         | $0.12 \pm 0.02$   | $0.10 \pm 0.02$              |
| KhM                               | 0.20                         | 0.10                         | 0.14                         | $0.14{\pm}0.02$   | $0.11 {\pm} 0.01$            |
| DuM                               | 0.33                         | 0.08                         | 0.08                         | $0.09 \pm 0.02$   | $0.06 \pm 0.01$              |
| $\mathrm{DoM}$                    | 0.47                         | 0.08                         | 0.09                         | $0.06 \pm 0.01$   | $0.04{\pm}0.01$              |
| $T_{OM}$                          | 0.25                         | 0.08                         | 0.09                         | $0.06 \pm 0.01$   | $0.05 \pm 0.01$              |
| KhS                               | 0.23                         | 0.14                         | 0.18                         | $0.13 \pm 0.01$   | $0.11 {\pm} 0.01$            |
| TuT                               | 0.36                         | 0.21                         | 0.24                         | $0.13 \pm 0.01$   | $0.12 \pm 0.01$              |
| $\mathrm{KhT}$                    | 0.27                         | 0.17                         | 0.21                         | $0.21 {\pm} 0.01$ | $0.18 \pm 0.02$              |
| $\mathrm{KgT}$                    | 0.55                         | 0.25                         | 0.25                         | $0.20 {\pm} 0.06$ | $0.20{\pm}0.06$              |
| $\operatorname{BaB}$              | 0.54                         | 0.26                         | 0.26                         | $0.14{\pm}0.04$   | $0.14{\pm}0.04$              |
| TbU                               | 0.45                         | 0.16                         | 0.16                         | $0.10 \pm 0.02$   | $0.10{\pm}0.02$              |
| YaY                               | 0.16                         | 0.25                         | 0.25                         | $0.18 \pm 0.04$   | $0.18 \pm 0.04$              |
| ChU                               | 0.48                         | 0.26                         | 0.27                         | $0.12 \pm 0.03$   | $0.12 \pm 0.03$              |
| BoU                               | 0.51                         | 0.27                         | 0.27                         | $0.22 \pm 0.05$   | $0.22 {\pm} 0.05$            |
| SuG                               | 0.83                         | 0.12                         | 0.12                         | $0.11 \pm 0.02$   | $0.11 \pm 0.02$              |
| BuO                               | 0.72                         | 0.15                         | 0.15                         | $0.07 \pm 0.01$   | $0.07{\pm}0.01$              |
| $\operatorname{ZaG}$              | 0.50                         | 0.15                         | 0.15                         | $0.06 \pm 0.01$   | $0.06 \pm 0.01$              |
| $\operatorname{ZaD}$              | 0.54                         | 0.17                         | 0.17                         | $0.06 \pm 0.01$   | $0.06 \pm 0.01$              |

| ern Mon-     | pectively.         |  |
|--------------|--------------------|--|
| offs in west | uration, res       |  |
| river run    | er config          |  |
| observed     | no-glaci           |  |
| ted and a    | tion with          |  |
| or simula    | d simula           |  |
| s (RC) f     | lation an          |  |
| oefficient   | on, simu           |  |
| Runoff c     | observat           |  |
| CV) and      | l denote           |  |
| riation (    | s, and ng          |  |
| nts of va    | s obs, <u>di</u> s |  |
| : Coefficier | bscription         |  |
| Table S1     | golia. Su          |  |

| Meteorological | station code                                                 | UL                                                                                                                     | UL                                                                                                                                            | $\rm YL$                                                                                                                                                        | $\rm YL$                                                                                                                                                                                                                              | $\rm YL$                                                                                                                                                                                                                                                                                                                                                                                                            | UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ВҮ                                                                                                                                                                                                                                                                                                                                                                                                            | ВҮ                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΚV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\operatorname{BT}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\operatorname{BT}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Observed       | $r_{APR}$                                                    | 0.347                                                                                                                  | 0.625                                                                                                                                         | 0.503                                                                                                                                                           | -0.170                                                                                                                                                                                                                                | 0.392                                                                                                                                                                                                                                                                                                                                                                                                               | -0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.255                                                                                                                                                                                                                                                                                                                                                                                                         | 0.105                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.358                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ubserved       | $r_{SAT}$                                                    | 0.362                                                                                                                  | -0.228                                                                                                                                        | 0.428                                                                                                                                                           | 0.102                                                                                                                                                                                                                                 | 0.103                                                                                                                                                                                                                                                                                                                                                                                                               | -0.137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.414                                                                                                                                                                                                                                                                                                                                                                                                         | 0.198                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.349                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Simulated      | $r_{APR}$                                                    | -0.011                                                                                                                 | 0.498                                                                                                                                         | 0.175                                                                                                                                                           | 0.095                                                                                                                                                                                                                                 | -0.046                                                                                                                                                                                                                                                                                                                                                                                                              | 0.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.391                                                                                                                                                                                                                                                                                                                                                                                                         | -0.574                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.065                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Simulated      | $r_{SAT}$                                                    | 0.606                                                                                                                  | -0.225                                                                                                                                        | 0.088                                                                                                                                                           | 0.215                                                                                                                                                                                                                                 | 0.267                                                                                                                                                                                                                                                                                                                                                                                                               | 0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.117                                                                                                                                                                                                                                                                                                                                                                                                         | 0.748                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Station        | $\operatorname{code}$                                        | $T_{sT}$                                                                                                               | $\mathrm{SoK}$                                                                                                                                | KhA                                                                                                                                                             | $\operatorname{SaB}$                                                                                                                                                                                                                  | TuS                                                                                                                                                                                                                                                                                                                                                                                                                 | $\operatorname{KhU}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | KhB                                                                                                                                                                                                                                                                                                                                                                                                           | UaE                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NaO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ChD                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GaD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BuD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BuK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\operatorname{KhM}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DuM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mathrm{DoM}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathrm{ToM}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KhS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TuT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\operatorname{KhT}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathrm{KgT}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BaB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TbU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | YaY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ChU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BoU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SuG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BuO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\operatorname{ZaG}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\operatorname{ZaD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | Station Simulated Simulated Observed Observed Meteorological | Station Simulated Simulated Observed Observed Meteorological code $r_{SAT}$ $r_{APR}$ $r_{SAT}$ $r_{APR}$ station code | StationSimulatedSimulatedObservedMeteorological $code$ $r_{SAT}$ $r_{APR}$ $r_{APR}$ station code $TsT$ $0.606$ $-0.011$ $0.362$ $0.347$ $UL$ | StationSimulatedSimulatedObservedMeteorologicalcode $r_{SAT}$ $r_{APR}$ $r_{APR}$ station codeTsT0.606 $-0.011$ 0.3620.347ULSoK $-0.225$ 0.498 $-0.228$ 0.625UL | StationSimulatedSimulatedObservedMeteorologicalcode $r_{SAT}$ $r_{APR}$ $r_{SAT}$ $r_{APR}$ station codeTsT $0.606$ $-0.011$ $0.362$ $0.347$ $UL$ SoK $-0.225$ $0.498$ $-0.228$ $0.625$ $UL$ KhA $0.088$ $0.175$ $0.428$ $0.503$ $YL$ | Station         Simulated         Simulated         Dimulated         Dimulated         Dimulated         Dimulated         Dimulated         Diserved         Meteorological $code$ $r_{SAT}$ $r_{APR}$ $r_{SAT}$ $r_{APR}$ station code $TsT$ $0.606$ $-0.011$ $0.362$ $0.347$ $UL$ SoK $-0.225$ $0.498$ $-0.228$ $0.625$ $UL$ KhA $0.088$ $0.175$ $0.428$ $0.503$ $YL$ SaB $0.215$ $0.095$ $0.102$ $-0.170$ $YL$ | Station         Simulated         Simulated         Dimulated         Distribution         Distres         Distribution         Distribution< | StationSimulatedSimulatedDimulatedDimulatedDimulatedDimulatedDimulated $code$ $r_{SAT}$ $r_{APR}$ $r_{APR}$ $r_{APR}$ meteorological $TsT$ $0.606$ $-0.011$ $0.362$ $0.347$ $UL$ $SoK$ $-0.225$ $0.498$ $-0.228$ $0.625$ $UL$ $KhA$ $0.088$ $0.175$ $0.428$ $0.503$ $YL$ $SaB$ $0.215$ $0.095$ $0.102$ $-0.170$ $YL$ $TuS$ $0.267$ $-0.046$ $0.103$ $0.392$ $YL$ $KhU$ $0.258$ $0.229$ $-0.137$ $-0.038$ $UL$ | StationSimulatedSimulatedDimulatedDimulatedDimulatedDimutatedDimutated $code$ $r_{SAT}$ $r_{APR}$ $r_{APR}$ $r_{APR}$ meteorological $TsT$ $0.606$ $-0.011$ $0.362$ $0.347$ $UL$ $SoK$ $-0.225$ $0.498$ $-0.228$ $0.625$ $UL$ $KhA$ $0.088$ $0.175$ $0.428$ $0.503$ $YL$ $SaB$ $0.215$ $0.095$ $0.102$ $-0.170$ $YL$ $TuS$ $0.226$ $-0.046$ $0.102$ $-0.170$ $YL$ $KhU$ $0.258$ $0.229$ $-0.137$ $-0.038$ $UL$ $KhB$ $0.117$ $0.391$ $0.414$ $0.255$ $BY$ | StationSimulatedSimulatedDimulatedDimulatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutatedDimutated< | StationSimulatedSimulatedDimulatedDimulatedDimutatedDimutatedDimutatedTsT $0.606$ $-0.011$ $0.362$ $0.347$ ULTsT $0.606$ $-0.011$ $0.362$ $0.347$ ULSoK $-0.225$ $0.498$ $-0.228$ $0.625$ ULKhA $0.088$ $0.175$ $0.428$ $0.503$ YLSaB $0.215$ $0.095$ $0.102$ $-0.170$ YLKhU $0.267$ $-0.046$ $0.102$ $-0.170$ YLKhB $0.117$ $0.229$ $-0.137$ $-0.038$ ULKhB $0.117$ $0.391$ $0.414$ $0.255$ BYUaE $0.748$ $-0.574$ $0.198$ $0.105$ BYNaO $-0.514$ $0.912$ $0.584$ $0.871$ KU | StationSimulatedSimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedTsT $0.606$ $-0.011$ $0.362$ $0.347$ $UL$ TsT $0.606$ $-0.011$ $0.362$ $0.347$ $UL$ SoK $-0.225$ $0.498$ $-0.228$ $0.625$ $UL$ KhA $0.088$ $0.175$ $0.428$ $0.503$ $YL$ KhU $0.215$ $0.095$ $0.102$ $-0.170$ $YL$ TuS $0.267$ $-0.046$ $0.103$ $0.392$ $YL$ KhU $0.258$ $0.229$ $-0.137$ $-0.038$ $UL$ KhB $0.117$ $0.391$ $0.414$ $0.255$ BYVac $0.748$ $-0.574$ $0.198$ $0.105$ BYNaO $-0.514$ $0.912$ $0.349$ $0.358$ $DL$ ChD $0.452$ $0.065$ $0.349$ $0.358$ $DL$ | StationSimulatedSimulatedDimulatedDimulatedDimulatedDimulatedDimulated $code$ $r_{SAT}$ $r_{APR}$ $r_{APR}$ $r_{APR}$ $r_{APR}$ Meteorological $TsT$ $0.606$ $-0.011$ $0.362$ $0.347$ $UL$ $SoK$ $-0.225$ $0.498$ $-0.228$ $0.625$ $UL$ $KhA$ $0.088$ $0.175$ $0.428$ $0.625$ $UL$ $KhU$ $0.215$ $0.095$ $0.102$ $-0.170$ $YL$ $KhU$ $0.258$ $0.203$ $0.102$ $-0.170$ $YL$ $VuS$ $0.258$ $0.229$ $-0.137$ $-0.038$ $UL$ $KhB$ $0.117$ $0.229$ $-0.137$ $-0.038$ $UL$ $VuS$ $0.256$ $0.103$ $0.392$ $YL$ $VuS$ $0.256$ $0.103$ $0.392$ $YL$ $VuS$ $0.748$ $-0.574$ $0.198$ $0.105$ $BY$ $VaE$ $0.748$ $-0.574$ $0.198$ $0.105$ $BY$ $VaC$ $0.748$ $-0.574$ $0.932$ $0.105$ $BY$ $VaC$ $0.748$ $-0.574$ $0.198$ $0.105$ $BY$ $VaC$ $0.748$ $-0.574$ $0.932$ $0.105$ $BY$ $VaC$ $0.748$ $-0.574$ $0.936$ $0.105$ $BY$ $VaC$ $0.748$ $0.912$ $0.584$ $0.871$ $KU$ $ChD$ $0.452$ $0.086$ $0.096$ $DL$ $DL$ | StationSimulatedSimulatedObservedObservedMeteorologicalcode $r_{SAT}$ $r_{APR}$ $r_{SAT}$ $r_{APR}$ $r_{APR}$ station codeTsT $0.606$ $-0.011$ $0.362$ $0.347$ $UL$ SoK $-0.225$ $0.498$ $-0.228$ $0.625$ $UL$ KhA $0.088$ $0.175$ $0.428$ $0.503$ $YL$ SaB $0.215$ $0.095$ $0.102$ $-0.170$ $YL$ KhU $0.267$ $-0.046$ $0.103$ $0.392$ $YL$ TuS $0.258$ $0.229$ $-0.137$ $-0.038$ $UL$ KhU $0.258$ $0.229$ $-0.137$ $-0.038$ $UL$ VaE $0.748$ $-0.574$ $0.103$ $0.392$ $YL$ VaE $0.748$ $-0.574$ $0.198$ $0.105$ $BY$ VaE $0.748$ $-0.574$ $0.198$ $0.105$ $BY$ VaE $0.748$ $-0.574$ $0.198$ $0.105$ $BY$ VaB $0.117$ $0.391$ $0.414$ $0.255$ $BY$ VaB $0.748$ $-0.514$ $0.198$ $0.105$ $BY$ VaB $0.748$ $0.152$ $0.349$ $0.358$ $DL$ GaD $0.452$ $0.086$ $0.096$ $DO66$ $DL$ BuD $0.580$ $-0.184$ $0.220$ $-0.077$ $DL$ | StationSimulatedSimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulatedDimulated< | StationSimulatedDimulatedObservedObservedMeteorologicalcode $r_{SAT}$ $r_{APR}$ $r_{SAT}$ $r_{APR}$ station codeTsT0.606 $-0.011$ 0.3620.347ULSoK $-0.225$ 0.498 $-0.228$ 0.625ULKhA0.0880.1750.4280.503YLSaB0.2150.0950.102 $-0.170$ YLKhU0.2580.229 $-0.170$ YLKhU0.2580.229 $-0.137$ $-0.038$ ULKhB0.1170.3910.4140.255BYVaE0.748 $-0.574$ 0.1980.105BYVaO $-0.514$ 0.91980.105BYVaO $-0.514$ 0.91980.105DLGaD0.4520.0650.3490.358DLBuD0.580 $-0.184$ 0.220 $-0.077$ DLBuK0.4210.0280.3470.142KVKhM0.2030.3470.142NA | StationSimulatedDimutatedDimutatedDimutatedDimutatedDimutatedTsT $0.606$ $-0.011$ $0.362$ $0.347$ $UL$ SoK $-0.225$ $0.498$ $-0.228$ $0.625$ $UL$ SoK $-0.225$ $0.498$ $-0.228$ $0.625$ $UL$ KhA $0.088$ $0.175$ $0.428$ $0.503$ $YL$ SaB $0.215$ $0.095$ $0.102$ $0.170$ $YL$ KhU $0.258$ $0.229$ $-0.170$ $YL$ YuS $0.258$ $0.229$ $-0.137$ $-0.038$ $UL$ KhB $0.117$ $0.391$ $0.414$ $0.255$ BYVac $0.748$ $-0.574$ $0.198$ $0.105$ PLKhB $0.117$ $0.391$ $0.414$ $0.255$ BYUaE $0.748$ $-0.574$ $0.198$ $0.105$ PYVac $0.748$ $-0.514$ $0.198$ $0.105$ BYVac $0.748$ $0.192$ $0.534$ $0.358$ $DL$ BuD $0.452$ $0.065$ $0.349$ $0.358$ $DL$ BuK $0.421$ $0.028$ $0.347$ $0.142$ $KV$ DuM $0.532$ $-0.233$ $0.072$ $0.036$ $MK$ | StationSimulatedSimulatedDimulatedDimulatedDimulatedDimulatedDimulatedTsT $0.606$ $-0.011$ $0.362$ $0.347$ ULTsT $0.606$ $-0.011$ $0.362$ $0.347$ ULSoK $-0.225$ $0.498$ $-0.228$ $0.625$ ULKhA $0.088$ $0.175$ $0.428$ $0.625$ ULKhA $0.088$ $0.175$ $0.428$ $0.503$ YLSaB $0.215$ $0.095$ $0.102$ $-0.170$ YLVus $0.258$ $0.229$ $-0.137$ $-0.038$ ULKhB $0.117$ $0.391$ $0.414$ $0.255$ BYVac $0.748$ $-0.574$ $0.198$ $0.105$ BYVad $0.748$ $-0.574$ $0.198$ $0.105$ BYVad $0.748$ $-0.574$ $0.195$ DLVad $0.748$ $-0.514$ $0.255$ BYVad $0.748$ $-0.544$ $0.735$ DLVad $0.748$ $-0.534$ $0.725$ DLMaO $-0.514$ $0.912$ $0.584$ $0.72$ BuD $0.580$ $-0.184$ $0.220$ $-0.077$ DLBuK $0.421$ $0.028$ $0.347$ $0.142$ KVDuM $0.532$ $-0.253$ $0.72$ $0.036$ MKDoM $0.509$ $-0.253$ $0.072$ $0.036$ MK | StationSimulatedSimulatedObservedMeteorological $code$ $r_{SAT}$ $r_{APR}$ $r_{SAT}$ $r_{APR}$ station codeTsT $0.606$ $-0.011$ $0.362$ $0.347$ ULSoK $-0.225$ $0.498$ $-0.228$ $0.625$ ULKhA $0.088$ $0.175$ $0.428$ $0.503$ YLSaB $0.215$ $0.498$ $-0.122$ $0.6102$ VLKhA $0.088$ $0.175$ $0.428$ $0.503$ YLYuS $0.2267$ $-0.046$ $0.102$ $0.170$ YLYuS $0.257$ $0.0391$ $0.117$ $0.392$ YLYuB $0.117$ $0.2391$ $0.1137$ $-0.038$ ULYuA $0.255$ $0.299$ $-0.137$ $-0.038$ ULWhB $0.117$ $0.391$ $0.414$ $0.255$ BYVaE $0.748$ $-0.574$ $0.198$ $0.105$ BYVaD $-0.514$ $0.912$ $0.584$ $0.871$ KUVaD $0.452$ $0.065$ $0.349$ $0.358$ DLBuD $0.580$ $-0.184$ $0.220$ $-0.077$ DLBuK $0.421$ $0.028$ $0.347$ $0.142$ KVVhM $0.532$ $-0.253$ $0.722$ $0.036$ MKDuM $0.532$ $-0.265$ $0.073$ MKToM $0.368$ $-0.265$ $0.073$ MK | StationSimulatedObservedObservedMeteorologicalcode $r_{SAT}$ $r_{APR}$ $r_{SAT}$ $r_{APR}$ station codeTsT $0.606$ $-0.011$ $0.362$ $0.347$ ULSoK $-0.225$ $0.498$ $-0.228$ $0.625$ ULKhA $0.088$ $0.175$ $0.428$ $0.503$ YLSaB $0.215$ $0.095$ $0.102$ $-0.170$ YLKhU $0.229$ $-0.137$ $-0.038$ $0.12$ $VL$ YuS $0.258$ $0.229$ $-0.137$ $-0.038$ $VL$ KhU $0.258$ $0.229$ $-0.137$ $-0.038$ $VL$ YuS $VL$ $0.391$ $0.414$ $0.255$ $BY$ KhB $0.117$ $0.391$ $0.414$ $0.255$ $BY$ Vac $0.748$ $-0.574$ $0.105$ $BY$ $VL$ KhB $0.117$ $0.391$ $0.414$ $0.255$ $BY$ Vac $0.748$ $-0.514$ $0.198$ $0.105$ $BY$ Vac $0.748$ $-0.544$ $0.371$ $KU$ Vac $0.421$ $0.920$ $-0.077$ $DL$ BuD $0.580$ $-0.184$ $0.220$ $-0.077$ $DL$ BuK $0.421$ $0.028$ $0.347$ $0.142$ $KV$ Vin $0.532$ $-0.230$ $0.072$ $0.036$ $MK$ Vin $0.532$ $-0.230$ $0.072$ $0.036$ $MK$ Vin $0.563$ $0.072$ $0.073$ $MK$ < | StationStationSimulatedSimulatedDimutatedSimulatedMeteorologicalcode $r_{SAT}$ $r_{APR}$ $r_{SAT}$ $r_{APR}$ station codeTsT $0.606$ $-0.011$ $0.362$ $0.347$ ULSoK $-0.225$ $0.498$ $-0.228$ $0.625$ ULShA $0.088$ $0.175$ $0.428$ $0.503$ YLSaB $0.215$ $0.095$ $0.102$ $-0.170$ YLVac $0.258$ $0.229$ $-0.137$ $-0.038$ ULKhU $0.258$ $0.229$ $-0.137$ $-0.038$ ULKhB $0.117$ $0.391$ $0.414$ $0.255$ BYVac $0.748$ $-0.574$ $0.105$ BYVao $-0.514$ $0.912$ $0.5384$ $0.871$ KUChD $0.444$ $0.220$ $-0.137$ $-0.036$ $DLBuD0.4140.2550.3490.105BYChD0.4520.00650.3490.358DLChD0.4520.0220.007DLDLBuD0.5800.3580.0720.072DLDuM0.532-0.2530.7220.036MKFMM0.232-0.2610.2260.036MKTuM0.5330.7220.036MKFMM0.232-0.2530.73MKDuM0.509-0.2530.7220.036<$ | StationSimulatedSimulatedDimutatedMeteorologicalcode $r_{SAT}$ $r_{APR}$ $r_{SAT}$ $r_{APR}$ $r_{SAT}$ ULTsT0.606 $-0.011$ 0.3620.347ULSoK $-0.225$ 0.498 $-0.228$ 0.625ULKhA0.0880.1750.4280.503YLSaB0.2150.0950.102 $-0.170$ YLShK0.2580.229 $-0.137$ $-0.382$ VLKhU0.2580.229 $-0.137$ $-0.038$ ULKhB0.1170.3910.4140.255BYVaE0.748 $-0.574$ 0.1980.105BYVaO $-0.514$ 0.9120.5840.871KUChD0.4450.0550.3490.358DLGaD0.4340.1520.096DDDLBuL0.580 $-0.184$ 0.229 $-0.077$ DLDuM0.5530.14220.096DLDLBuL0.5890.3470.142NKVa0.4330.2030.229 $-0.230$ MKToM0.532 $-0.253$ 0.722 $-0.077$ DLBuL0.589 $0.347$ 0.142NKVa0.589 $0.367$ $-0.230$ MKToM0.589 $0.368$ $0.73$ MKToM0.589 $0.940$ $0.268$ $0.072$ NaO $-0.198$ $0.252$ $-0.230$ <td>StationSimulatedSimulatedDimutatedMeteorologicalcode<math>r_{SAT}</math><math>r_{APR}</math><math>r_{SAT}</math><math>r_{APR}</math>MeteorologicalTsT0.606<math>-0.011</math>0.362<math>0.347</math>ULSoK<math>-0.225</math><math>0.498</math><math>-0.228</math><math>0.625</math>ULKhA0.088<math>0.175</math><math>0.428</math><math>0.503</math>YLSaB<math>0.215</math><math>0.095</math><math>0.102</math><math>-0.170</math>YLKhU<math>0.258</math><math>0.229</math><math>-0.137</math><math>-0.038</math>ULKhU<math>0.258</math><math>0.229</math><math>-0.137</math><math>-0.038</math>ULKhB<math>0.117</math><math>0.391</math><math>0.414</math><math>0.255</math>BYVaE<math>0.748</math><math>-0.574</math><math>0.198</math><math>0.105</math>BYVaE<math>0.748</math><math>-0.514</math><math>0.912</math><math>0.584</math><math>0.871</math>KUVaE<math>0.748</math><math>0.152</math><math>0.096</math>DLDLBuD<math>0.580</math><math>-0.184</math><math>0.220</math><math>-0.077</math>DLBuK<math>0.421</math><math>0.028</math><math>0.347</math><math>0.142</math>KVVhM<math>0.203</math><math>0.072</math><math>0.096</math>DLBuK<math>0.421</math><math>0.028</math><math>0.072</math><math>0.077</math>DLChD<math>0.532</math><math>-0.1462</math><math>0.036</math><math>0.073</math>MKVhM<math>0.203</math><math>0.072</math><math>0.036</math><math>0.073</math>MKVhM<math>0.203</math><math>0.072</math><math>0.036</math><math>0.073</math>MKVa<math>0.036</math><math>0.0940</math><math>0.229</math><math>0.073</math>MKVa<math>0.037</math><math>0.036</math><math>0.093</math><math>0.073</math>MK<!--</td--><td>StattonSimulatedUbservedUbservedMeteorologicalcode<math>T_{SAT}</math><math>T_{APR}</math><math>T_{SAT}</math><math>T_{APR}</math>station codeTsT0.606<math>-0.0111</math>0.362<math>0.347</math>ULSoK<math>-0.225</math>0.498<math>-0.228</math><math>0.625</math>ULKhA0.088<math>0.175</math><math>0.428</math><math>0.503</math>YLSaB0.2150.095<math>0.102</math><math>0.170</math>YLKhU0.258<math>0.267</math><math>-0.046</math><math>0.103</math><math>0.392</math>YLKhB<math>0.117</math><math>0.391</math><math>0.414</math><math>0.255</math>BYKhB<math>0.117</math><math>0.391</math><math>0.414</math><math>0.255</math>BYVaE<math>0.748</math><math>-0.514</math><math>0.198</math><math>0.105</math>BYVaE<math>0.748</math><math>-0.514</math><math>0.1912</math><math>0.358</math>ULKhB<math>0.117</math><math>0.391</math><math>0.414</math><math>0.255</math>BYVaE<math>0.748</math><math>-0.514</math><math>0.192</math><math>0.358</math>ULKhM<math>0.250</math><math>0.1025</math><math>0.349</math><math>0.358</math>DLBulb<math>0.580</math><math>-0.184</math><math>0.220</math><math>-0.077</math>DLBulh<math>0.532</math><math>-0.233</math><math>0.072</math><math>0.036</math>MKDoM<math>0.532</math><math>-0.253</math><math>0.072</math><math>0.036</math>MKVint<math>0.252</math><math>-0.230</math><math>0.072</math><math>0.036</math>MKVint<math>0.253</math><math>0.722</math><math>0.072</math><math>0.073</math>MKDoM<math>0.533</math><math>0.307</math><math>0.036</math><math>0.036</math>UGFint<math>-0.327</math><math>0.668</math><math>0.0307</math><math>0</math></td><td>StationSimulatedSimulatedDimutatedDimutatedDimutatedTST<math>0.606</math><math>-0.011</math><math>0.362</math><math>0.347</math>ULTST<math>0.606</math><math>-0.011</math><math>0.362</math><math>0.347</math>ULSoK<math>-0.225</math><math>0.498</math><math>-0.228</math><math>0.625</math>ULSaB<math>0.215</math><math>0.095</math><math>0.102</math><math>0.122</math>ULThis<math>0.267</math><math>-0.046</math><math>0.102</math><math>0.170</math>YLThis<math>0.256</math><math>0.095</math><math>0.102</math><math>0.170</math>YLKhU<math>0.258</math><math>0.229</math><math>0.1137</math><math>-0.038</math>ULKhU<math>0.258</math><math>0.209</math><math>0.1137</math><math>-0.038</math>ULKhU<math>0.258</math><math>0.2012</math><math>0.137</math><math>-0.038</math>ULKhU<math>0.253</math><math>0.2349</math><math>0.137</math><math>-0.038</math>ULKhU<math>0.253</math><math>0.2349</math><math>0.105</math><math>0.116</math>YLKhU<math>0.253</math><math>0.2349</math><math>0.358</math><math>0.107</math>DLBulb<math>0.448</math><math>0.220</math><math>-0.137</math><math>0.077</math>DLBulk<math>0.414</math><math>0.220</math><math>0.072</math><math>0.077</math>DLBulk<math>0.433</math><math>0.226</math><math>0.072</math><math>0.077</math>DLDoM<math>0.532</math><math>-0.253</math><math>0.732</math>MKDoM<math>0.533</math><math>0.072</math><math>0.036</math><math>0.733</math>Bulk<math>0.498</math><math>0.522</math><math>0.072</math><math>0.037</math>UGFMM<math>0.230</math><math>0.142</math><math>0.265</math><math>0.073</math>MKDoM<math>0.503</math><math>0.733</math><math>0.728</math>UGBulk</td><td>Station         Simulated         Simulated         Simulated         Simulated         Simulated         Simulated         Mateorological           TST         <math>0.606</math> <math>-0.011</math> <math>0.362</math> <math>0.347</math>         UL           TsT         <math>0.606</math> <math>-0.011</math> <math>0.362</math> <math>0.347</math>         UL           SoK         <math>-0.225</math> <math>0.498</math> <math>-0.228</math> <math>0.625</math>         UL           KhA         <math>0.088</math> <math>0.175</math> <math>0.428</math> <math>0.503</math>         UL           KhU         <math>0.225</math> <math>0.428</math> <math>0.503</math> <math>0.170</math>         YL           KhU         <math>0.255</math> <math>0.428</math> <math>0.170</math> <math>0.117</math> <math>0.392</math> <math>VL</math>           KhU         <math>0.258</math> <math>0.213</math> <math>0.213</math> <math>0.213</math> <math>0.215</math> <math>VL</math>           NaO         <math>-0.514</math> <math>0.912</math> <math>0.347</math> <math>0.281</math> <math>VU</math>           KhB         <math>0.117</math> <math>0.3349</math> <math>0.3358</math> <math>DL</math> <math>DL</math>           GaD         <math>0.448</math> <math>0.252</math> <math>0.036</math> <math>DL</math> <math>DL</math>           Bulk         <math>0.233</math> <math>0.253</math> <math>0.253</math> <math>0.266</math></td><td>Station         Simulated         Simulated         Dimutated         Simulated         Intereorological           TsT         <math>0.606</math> <math>-0.011</math> <math>0.362</math> <math>0.347</math>         UL           TsT         <math>0.606</math> <math>-0.011</math> <math>0.362</math> <math>0.025</math> <math>0.1498</math>           SolK         <math>-0.225</math> <math>0.498</math> <math>-0.228</math> <math>0.625</math> <math>0.11</math>           KhU         <math>0.267</math> <math>-0.046</math> <math>0.102</math> <math>0.170</math> <math>0.127</math> <math>0.032</math> <math>VL</math>           KhU         <math>0.256</math> <math>0.046</math> <math>0.102</math> <math>0.170</math> <math>0.137</math> <math>0.038</math> <math>VL</math>           KhU         <math>0.256</math> <math>0.046</math> <math>0.102</math> <math>0.170</math> <math>0.137</math> <math>0.038</math> <math>VL</math>           KhB         <math>0.117</math> <math>0.391</math> <math>0.414</math> <math>0.255</math> <math>VL</math> <math>VL</math>           KhB         <math>0.117</math> <math>0.391</math> <math>0.414</math> <math>0.255</math> <math>VL</math> <math>VL</math>           KhB         <math>0.117</math> <math>0.391</math> <math>0.414</math> <math>0.255</math> <math>VL</math> <math>VL</math>           KhB         <math>0.748</math> <math>0.152</math> <math>0.086</math> <math>0.365</math> <math>VL</math> <math>VL</math></td><td>Station         Simulated         Simulated         Dimutated         Simulated         Interectological           TsT         <math>0.606</math> <math>-0.011</math> <math>0.362</math> <math>0.347</math>         UL           TsT         <math>0.606</math> <math>-0.011</math> <math>0.362</math> <math>0.117</math> <math>0.232</math> <math>0.125</math> <math>0.1498</math> <math>-0.228</math> <math>0.625</math> <math>UL</math>           KhA         <math>0.088</math> <math>0.1175</math> <math>0.428</math> <math>0.503</math> <math>VL</math> <math>VL</math>           KhB         <math>0.117</math> <math>0.395</math> <math>0.127</math> <math>0.0322</math> <math>VL</math> <math>VL</math>           KhB         <math>0.117</math> <math>0.391</math> <math>0.1137</math> <math>0.392</math> <math>VL</math> <math>VL</math>           KhB         <math>0.117</math> <math>0.2391</math> <math>0.1137</math> <math>0.392</math> <math>VL</math> <math>VL</math>           KhB         <math>0.117</math> <math>0.391</math> <math>0.4144</math> <math>0.255</math> <math>VL</math> <math>VL</math>           KhB         <math>0.117</math> <math>0.391</math> <math>0.4144</math> <math>0.235</math> <math>VL</math> <math>VL</math>           KhB         <math>0.7434</math> <math>0.1522</math> <math>0.0367</math> <math>0.0167</math> <math>DL</math> <math>DL</math>           BuD         <math>0.580</math> <math>0.3449</math> <math>0.574</math></td><td>Station         Simulated         Smullated         Dimutated         Sumulated         Dimutated         Distributicate         Distr</td><td>Station         Simulated         Smullated         Sumulated         Sumon Sumulated         Sumulated</td><td>Station         Simulated         Smullated         Dimutated         Smullated         Observed         Meteorological           TsT         <math>0.606</math> <math>-0.011</math> <math>0.362</math> <math>0.347</math>         UL           SolK         <math>-0.223</math> <math>0.178</math> <math>0.362</math> <math>0.011</math> <math>0.362</math> <math>UL</math>           KhU         <math>0.088</math> <math>0.175</math> <math>0.428</math> <math>0.533</math> <math>UL</math>           KhU         <math>0.236</math> <math>0.013</math> <math>0.137</math> <math>0.137</math> <math>0.170</math> <math>YL</math>           KhU         <math>0.236</math> <math>0.215</math> <math>0.0495</math> <math>0.117</math> <math>0.392</math> <math>YL</math>           KhU         <math>0.236</math> <math>0.213</math> <math>0.102</math> <math>-0.170</math> <math>YL</math>           KhU         <math>0.236</math> <math>0.203</math> <math>0.117</math> <math>0.392</math> <math>VL</math>           Via         <math>0.117</math> <math>0.391</math> <math>0.138</math> <math>0.170</math> <math>VL</math>           KhU         <math>0.236</math> <math>0.213</math> <math>0.347</math> <math>0.271</math> <math>VL</math>           KhM         <math>0.233</math> <math>0.112</math> <math>0.347</math> <math>0.712</math> <math>VL</math>           BuD         <math>0.532</math> <math>0.1625</math> <math>0.377</math> <math>0.712</math></td></td> | StationSimulatedSimulatedDimutatedMeteorologicalcode $r_{SAT}$ $r_{APR}$ $r_{SAT}$ $r_{APR}$ MeteorologicalTsT0.606 $-0.011$ 0.362 $0.347$ ULSoK $-0.225$ $0.498$ $-0.228$ $0.625$ ULKhA0.088 $0.175$ $0.428$ $0.503$ YLSaB $0.215$ $0.095$ $0.102$ $-0.170$ YLKhU $0.258$ $0.229$ $-0.137$ $-0.038$ ULKhU $0.258$ $0.229$ $-0.137$ $-0.038$ ULKhB $0.117$ $0.391$ $0.414$ $0.255$ BYVaE $0.748$ $-0.574$ $0.198$ $0.105$ BYVaE $0.748$ $-0.514$ $0.912$ $0.584$ $0.871$ KUVaE $0.748$ $0.152$ $0.096$ DLDLBuD $0.580$ $-0.184$ $0.220$ $-0.077$ DLBuK $0.421$ $0.028$ $0.347$ $0.142$ KVVhM $0.203$ $0.072$ $0.096$ DLBuK $0.421$ $0.028$ $0.072$ $0.077$ DLChD $0.532$ $-0.1462$ $0.036$ $0.073$ MKVhM $0.203$ $0.072$ $0.036$ $0.073$ MKVhM $0.203$ $0.072$ $0.036$ $0.073$ MKVa $0.036$ $0.0940$ $0.229$ $0.073$ MKVa $0.037$ $0.036$ $0.093$ $0.073$ MK </td <td>StattonSimulatedUbservedUbservedMeteorologicalcode<math>T_{SAT}</math><math>T_{APR}</math><math>T_{SAT}</math><math>T_{APR}</math>station codeTsT0.606<math>-0.0111</math>0.362<math>0.347</math>ULSoK<math>-0.225</math>0.498<math>-0.228</math><math>0.625</math>ULKhA0.088<math>0.175</math><math>0.428</math><math>0.503</math>YLSaB0.2150.095<math>0.102</math><math>0.170</math>YLKhU0.258<math>0.267</math><math>-0.046</math><math>0.103</math><math>0.392</math>YLKhB<math>0.117</math><math>0.391</math><math>0.414</math><math>0.255</math>BYKhB<math>0.117</math><math>0.391</math><math>0.414</math><math>0.255</math>BYVaE<math>0.748</math><math>-0.514</math><math>0.198</math><math>0.105</math>BYVaE<math>0.748</math><math>-0.514</math><math>0.1912</math><math>0.358</math>ULKhB<math>0.117</math><math>0.391</math><math>0.414</math><math>0.255</math>BYVaE<math>0.748</math><math>-0.514</math><math>0.192</math><math>0.358</math>ULKhM<math>0.250</math><math>0.1025</math><math>0.349</math><math>0.358</math>DLBulb<math>0.580</math><math>-0.184</math><math>0.220</math><math>-0.077</math>DLBulh<math>0.532</math><math>-0.233</math><math>0.072</math><math>0.036</math>MKDoM<math>0.532</math><math>-0.253</math><math>0.072</math><math>0.036</math>MKVint<math>0.252</math><math>-0.230</math><math>0.072</math><math>0.036</math>MKVint<math>0.253</math><math>0.722</math><math>0.072</math><math>0.073</math>MKDoM<math>0.533</math><math>0.307</math><math>0.036</math><math>0.036</math>UGFint<math>-0.327</math><math>0.668</math><math>0.0307</math><math>0</math></td> <td>StationSimulatedSimulatedDimutatedDimutatedDimutatedTST<math>0.606</math><math>-0.011</math><math>0.362</math><math>0.347</math>ULTST<math>0.606</math><math>-0.011</math><math>0.362</math><math>0.347</math>ULSoK<math>-0.225</math><math>0.498</math><math>-0.228</math><math>0.625</math>ULSaB<math>0.215</math><math>0.095</math><math>0.102</math><math>0.122</math>ULThis<math>0.267</math><math>-0.046</math><math>0.102</math><math>0.170</math>YLThis<math>0.256</math><math>0.095</math><math>0.102</math><math>0.170</math>YLKhU<math>0.258</math><math>0.229</math><math>0.1137</math><math>-0.038</math>ULKhU<math>0.258</math><math>0.209</math><math>0.1137</math><math>-0.038</math>ULKhU<math>0.258</math><math>0.2012</math><math>0.137</math><math>-0.038</math>ULKhU<math>0.253</math><math>0.2349</math><math>0.137</math><math>-0.038</math>ULKhU<math>0.253</math><math>0.2349</math><math>0.105</math><math>0.116</math>YLKhU<math>0.253</math><math>0.2349</math><math>0.358</math><math>0.107</math>DLBulb<math>0.448</math><math>0.220</math><math>-0.137</math><math>0.077</math>DLBulk<math>0.414</math><math>0.220</math><math>0.072</math><math>0.077</math>DLBulk<math>0.433</math><math>0.226</math><math>0.072</math><math>0.077</math>DLDoM<math>0.532</math><math>-0.253</math><math>0.732</math>MKDoM<math>0.533</math><math>0.072</math><math>0.036</math><math>0.733</math>Bulk<math>0.498</math><math>0.522</math><math>0.072</math><math>0.037</math>UGFMM<math>0.230</math><math>0.142</math><math>0.265</math><math>0.073</math>MKDoM<math>0.503</math><math>0.733</math><math>0.728</math>UGBulk</td> <td>Station         Simulated         Simulated         Simulated         Simulated         Simulated         Simulated         Mateorological           TST         <math>0.606</math> <math>-0.011</math> <math>0.362</math> <math>0.347</math>         UL           TsT         <math>0.606</math> <math>-0.011</math> <math>0.362</math> <math>0.347</math>         UL           SoK         <math>-0.225</math> <math>0.498</math> <math>-0.228</math> <math>0.625</math>         UL           KhA         <math>0.088</math> <math>0.175</math> <math>0.428</math> <math>0.503</math>         UL           KhU         <math>0.225</math> <math>0.428</math> <math>0.503</math> <math>0.170</math>         YL           KhU         <math>0.255</math> <math>0.428</math> <math>0.170</math> <math>0.117</math> <math>0.392</math> <math>VL</math>           KhU         <math>0.258</math> <math>0.213</math> <math>0.213</math> <math>0.213</math> <math>0.215</math> <math>VL</math>           NaO         <math>-0.514</math> <math>0.912</math> <math>0.347</math> <math>0.281</math> <math>VU</math>           KhB         <math>0.117</math> <math>0.3349</math> <math>0.3358</math> <math>DL</math> <math>DL</math>           GaD         <math>0.448</math> <math>0.252</math> <math>0.036</math> <math>DL</math> <math>DL</math>           Bulk         <math>0.233</math> <math>0.253</math> <math>0.253</math> <math>0.266</math></td> <td>Station         Simulated         Simulated         Dimutated         Simulated         Intereorological           TsT         <math>0.606</math> <math>-0.011</math> <math>0.362</math> <math>0.347</math>         UL           TsT         <math>0.606</math> <math>-0.011</math> <math>0.362</math> <math>0.025</math> <math>0.1498</math>           SolK         <math>-0.225</math> <math>0.498</math> <math>-0.228</math> <math>0.625</math> <math>0.11</math>           KhU         <math>0.267</math> <math>-0.046</math> <math>0.102</math> <math>0.170</math> <math>0.127</math> <math>0.032</math> <math>VL</math>           KhU         <math>0.256</math> <math>0.046</math> <math>0.102</math> <math>0.170</math> <math>0.137</math> <math>0.038</math> <math>VL</math>           KhU         <math>0.256</math> <math>0.046</math> <math>0.102</math> <math>0.170</math> <math>0.137</math> <math>0.038</math> <math>VL</math>           KhB         <math>0.117</math> <math>0.391</math> <math>0.414</math> <math>0.255</math> <math>VL</math> <math>VL</math>           KhB         <math>0.117</math> <math>0.391</math> <math>0.414</math> <math>0.255</math> <math>VL</math> <math>VL</math>           KhB         <math>0.117</math> <math>0.391</math> <math>0.414</math> <math>0.255</math> <math>VL</math> <math>VL</math>           KhB         <math>0.748</math> <math>0.152</math> <math>0.086</math> <math>0.365</math> <math>VL</math> <math>VL</math></td> <td>Station         Simulated         Simulated         Dimutated         Simulated         Interectological           TsT         <math>0.606</math> <math>-0.011</math> <math>0.362</math> <math>0.347</math>         UL           TsT         <math>0.606</math> <math>-0.011</math> <math>0.362</math> <math>0.117</math> <math>0.232</math> <math>0.125</math> <math>0.1498</math> <math>-0.228</math> <math>0.625</math> <math>UL</math>           KhA         <math>0.088</math> <math>0.1175</math> <math>0.428</math> <math>0.503</math> <math>VL</math> <math>VL</math>           KhB         <math>0.117</math> <math>0.395</math> <math>0.127</math> <math>0.0322</math> <math>VL</math> <math>VL</math>           KhB         <math>0.117</math> <math>0.391</math> <math>0.1137</math> <math>0.392</math> <math>VL</math> <math>VL</math>           KhB         <math>0.117</math> <math>0.2391</math> <math>0.1137</math> <math>0.392</math> <math>VL</math> <math>VL</math>           KhB         <math>0.117</math> <math>0.391</math> <math>0.4144</math> <math>0.255</math> <math>VL</math> <math>VL</math>           KhB         <math>0.117</math> <math>0.391</math> <math>0.4144</math> <math>0.235</math> <math>VL</math> <math>VL</math>           KhB         <math>0.7434</math> <math>0.1522</math> <math>0.0367</math> <math>0.0167</math> <math>DL</math> <math>DL</math>           BuD         <math>0.580</math> <math>0.3449</math> <math>0.574</math></td> <td>Station         Simulated         Smullated         Dimutated         Sumulated         Dimutated         Distributicate         Distr</td> <td>Station         Simulated         Smullated         Sumulated         Sumon Sumulated         Sumulated</td> <td>Station         Simulated         Smullated         Dimutated         Smullated         Observed         Meteorological           TsT         <math>0.606</math> <math>-0.011</math> <math>0.362</math> <math>0.347</math>         UL           SolK         <math>-0.223</math> <math>0.178</math> <math>0.362</math> <math>0.011</math> <math>0.362</math> <math>UL</math>           KhU         <math>0.088</math> <math>0.175</math> <math>0.428</math> <math>0.533</math> <math>UL</math>           KhU         <math>0.236</math> <math>0.013</math> <math>0.137</math> <math>0.137</math> <math>0.170</math> <math>YL</math>           KhU         <math>0.236</math> <math>0.215</math> <math>0.0495</math> <math>0.117</math> <math>0.392</math> <math>YL</math>           KhU         <math>0.236</math> <math>0.213</math> <math>0.102</math> <math>-0.170</math> <math>YL</math>           KhU         <math>0.236</math> <math>0.203</math> <math>0.117</math> <math>0.392</math> <math>VL</math>           Via         <math>0.117</math> <math>0.391</math> <math>0.138</math> <math>0.170</math> <math>VL</math>           KhU         <math>0.236</math> <math>0.213</math> <math>0.347</math> <math>0.271</math> <math>VL</math>           KhM         <math>0.233</math> <math>0.112</math> <math>0.347</math> <math>0.712</math> <math>VL</math>           BuD         <math>0.532</math> <math>0.1625</math> <math>0.377</math> <math>0.712</math></td> | StattonSimulatedUbservedUbservedMeteorologicalcode $T_{SAT}$ $T_{APR}$ $T_{SAT}$ $T_{APR}$ station codeTsT0.606 $-0.0111$ 0.362 $0.347$ ULSoK $-0.225$ 0.498 $-0.228$ $0.625$ ULKhA0.088 $0.175$ $0.428$ $0.503$ YLSaB0.2150.095 $0.102$ $0.170$ YLKhU0.258 $0.267$ $-0.046$ $0.103$ $0.392$ YLKhB $0.117$ $0.391$ $0.414$ $0.255$ BYKhB $0.117$ $0.391$ $0.414$ $0.255$ BYVaE $0.748$ $-0.514$ $0.198$ $0.105$ BYVaE $0.748$ $-0.514$ $0.1912$ $0.358$ ULKhB $0.117$ $0.391$ $0.414$ $0.255$ BYVaE $0.748$ $-0.514$ $0.192$ $0.358$ ULKhM $0.250$ $0.1025$ $0.349$ $0.358$ DLBulb $0.580$ $-0.184$ $0.220$ $-0.077$ DLBulh $0.532$ $-0.233$ $0.072$ $0.036$ MKDoM $0.532$ $-0.253$ $0.072$ $0.036$ MKVint $0.252$ $-0.230$ $0.072$ $0.036$ MKVint $0.253$ $0.722$ $0.072$ $0.073$ MKDoM $0.533$ $0.307$ $0.036$ $0.036$ UGFint $-0.327$ $0.668$ $0.0307$ $0$ | StationSimulatedSimulatedDimutatedDimutatedDimutatedTST $0.606$ $-0.011$ $0.362$ $0.347$ ULTST $0.606$ $-0.011$ $0.362$ $0.347$ ULSoK $-0.225$ $0.498$ $-0.228$ $0.625$ ULSaB $0.215$ $0.095$ $0.102$ $0.122$ ULThis $0.267$ $-0.046$ $0.102$ $0.170$ YLThis $0.256$ $0.095$ $0.102$ $0.170$ YLKhU $0.258$ $0.229$ $0.1137$ $-0.038$ ULKhU $0.258$ $0.209$ $0.1137$ $-0.038$ ULKhU $0.258$ $0.2012$ $0.137$ $-0.038$ ULKhU $0.253$ $0.2349$ $0.137$ $-0.038$ ULKhU $0.253$ $0.2349$ $0.105$ $0.116$ YLKhU $0.253$ $0.2349$ $0.358$ $0.107$ DLBulb $0.448$ $0.220$ $-0.137$ $0.077$ DLBulk $0.414$ $0.220$ $0.072$ $0.077$ DLBulk $0.433$ $0.226$ $0.072$ $0.077$ DLDoM $0.532$ $-0.253$ $0.732$ MKDoM $0.533$ $0.072$ $0.036$ $0.733$ Bulk $0.498$ $0.522$ $0.072$ $0.037$ UGFMM $0.230$ $0.142$ $0.265$ $0.073$ MKDoM $0.503$ $0.733$ $0.728$ UGBulk | Station         Simulated         Simulated         Simulated         Simulated         Simulated         Simulated         Mateorological           TST $0.606$ $-0.011$ $0.362$ $0.347$ UL           TsT $0.606$ $-0.011$ $0.362$ $0.347$ UL           SoK $-0.225$ $0.498$ $-0.228$ $0.625$ UL           KhA $0.088$ $0.175$ $0.428$ $0.503$ UL           KhU $0.225$ $0.428$ $0.503$ $0.170$ YL           KhU $0.255$ $0.428$ $0.170$ $0.117$ $0.392$ $VL$ KhU $0.258$ $0.213$ $0.213$ $0.213$ $0.215$ $VL$ NaO $-0.514$ $0.912$ $0.347$ $0.281$ $VU$ KhB $0.117$ $0.3349$ $0.3358$ $DL$ $DL$ GaD $0.448$ $0.252$ $0.036$ $DL$ $DL$ Bulk $0.233$ $0.253$ $0.253$ $0.266$ | Station         Simulated         Simulated         Dimutated         Simulated         Intereorological           TsT $0.606$ $-0.011$ $0.362$ $0.347$ UL           TsT $0.606$ $-0.011$ $0.362$ $0.025$ $0.1498$ SolK $-0.225$ $0.498$ $-0.228$ $0.625$ $0.11$ KhU $0.267$ $-0.046$ $0.102$ $0.170$ $0.127$ $0.032$ $VL$ KhU $0.256$ $0.046$ $0.102$ $0.170$ $0.137$ $0.038$ $VL$ KhU $0.256$ $0.046$ $0.102$ $0.170$ $0.137$ $0.038$ $VL$ KhB $0.117$ $0.391$ $0.414$ $0.255$ $VL$ $VL$ KhB $0.117$ $0.391$ $0.414$ $0.255$ $VL$ $VL$ KhB $0.117$ $0.391$ $0.414$ $0.255$ $VL$ $VL$ KhB $0.748$ $0.152$ $0.086$ $0.365$ $VL$ $VL$ | Station         Simulated         Simulated         Dimutated         Simulated         Interectological           TsT $0.606$ $-0.011$ $0.362$ $0.347$ UL           TsT $0.606$ $-0.011$ $0.362$ $0.117$ $0.232$ $0.125$ $0.1498$ $-0.228$ $0.625$ $UL$ KhA $0.088$ $0.1175$ $0.428$ $0.503$ $VL$ $VL$ KhB $0.117$ $0.395$ $0.127$ $0.0322$ $VL$ $VL$ KhB $0.117$ $0.391$ $0.1137$ $0.392$ $VL$ $VL$ KhB $0.117$ $0.2391$ $0.1137$ $0.392$ $VL$ $VL$ KhB $0.117$ $0.391$ $0.4144$ $0.255$ $VL$ $VL$ KhB $0.117$ $0.391$ $0.4144$ $0.235$ $VL$ $VL$ KhB $0.7434$ $0.1522$ $0.0367$ $0.0167$ $DL$ $DL$ BuD $0.580$ $0.3449$ $0.574$ | Station         Simulated         Smullated         Dimutated         Sumulated         Dimutated         Distributicate         Distr | Station         Simulated         Smullated         Sumulated         Sumon Sumulated         Sumulated | Station         Simulated         Smullated         Dimutated         Smullated         Observed         Meteorological           TsT $0.606$ $-0.011$ $0.362$ $0.347$ UL           SolK $-0.223$ $0.178$ $0.362$ $0.011$ $0.362$ $UL$ KhU $0.088$ $0.175$ $0.428$ $0.533$ $UL$ KhU $0.236$ $0.013$ $0.137$ $0.137$ $0.170$ $YL$ KhU $0.236$ $0.215$ $0.0495$ $0.117$ $0.392$ $YL$ KhU $0.236$ $0.213$ $0.102$ $-0.170$ $YL$ KhU $0.236$ $0.203$ $0.117$ $0.392$ $VL$ Via $0.117$ $0.391$ $0.138$ $0.170$ $VL$ KhU $0.236$ $0.213$ $0.347$ $0.271$ $VL$ KhM $0.233$ $0.112$ $0.347$ $0.712$ $VL$ BuD $0.532$ $0.1625$ $0.377$ $0.712$ |

Table S2: Correlation coefficients of simulated and observed river runoffs to mean summer temperature (SAT) and annual precipitation (APR) in western Mongolia. Meteorological station code denotes the station whose data are used to obtain the observed correlation coefficients.

Table S3: Normalized anomalies of runoff (R) with those of annual precipitation (APR) and mean summer temperature (SAT) at the 30 catchments in western Mongolia. For each case, the three extreme years are selected. All variables are normalized

| $\frac{1}{R_{dr_{l}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $R_{wet}$ $APR_{wet}$ $R_{cold}$ $S_L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4T <sub>cold</sub> R <sub>warm</sub> | $SAT_{warm}$       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------|
| $.51\pm0.04$ $-1.40\pm0.62$ $-0.59\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-0.67$ 1.51 $\pm 0.31$ $-0.80\pm 0.60$ $-1.8$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3±0.40 0.23±1.70                     | $1.14\pm0.04$      |
| $0.35\pm0.66$ $-1.47\pm0.32$ $1.47\pm0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.93  1.72 \pm 0.44  0.89 \pm 1.59  -1.73$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $9\pm0.35$ $0.71\pm0.1$              | $1.14\pm0.08$      |
| $0.30\pm0.36$ $-1.58\pm0.10$ $0.54\pm0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.86  1.47\pm0.17  0.01\pm1.08  -1.8.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $5\pm0.16$ 0.13 $\pm1.3$             | $1.11\pm0.10$      |
| $0.22\pm0.31$ $-1.53\pm0.17$ $0.09\pm0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.23$ $1.53\pm0.31$ $-0.25\pm1.29$ $-1.8^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4±0.14 0.54±0.78                     | $1.14\pm0.11$      |
| $0.12\pm0.36$ $-1.36\pm0.22$ $0.12\pm0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.21  1.82 \pm 0.11  -0.52 \pm 1.10  -1.81$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0\pm0.13$ $-0.01\pm1.3$             | $1.22\pm0.13$      |
| $0.38\pm0.25$ $-1.49\pm0.20$ $0.72\pm3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.06  1.66 \pm 0.24  -0.21 \pm 1.12  -1.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2±0.18 0.73±1.0                      | $1.18\pm0.08$      |
| $0.12\pm0.85$ $-1.37\pm0.28$ $0.26\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.44$ $1.82\pm0.30$ $-0.51\pm1.04$ $-1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7±0.22 0.43±0.4                      | $1.25\pm0.06$      |
| $(.97\pm0.25  -1.33\pm0.44  -0.60 \pm 0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.001  -0.00$ | ±0.37 1.66±0.30 -1.24±0.36 -1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $6\pm 0.22$ 0.17 $\pm 1.2$           | $1.26\pm0.24$      |
| $1.27\pm0.17$ $-1.51\pm0.45$ $0.41\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.52$ $1.63\pm0.34$ $0.88\pm1.07$ $-1.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $7\pm0.21$ -0.42±0.7                 | $5 1.40\pm0.32$    |
| $0.24\pm0.66$ $-1.53\pm0.21$ $0.51\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.73$ $1.45\pm0.08$ $-1.03\pm0.70$ $-1.8^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4±0.18 0.32±1.1                      | $1.20\pm0.11$      |
| $0.25\pm0.71$ $-1.39\pm0.02$ $0.50\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.80$ $1.51\pm0.18$ $-0.97\pm0.73$ $-1.8i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $5\pm0.17$ 0.33 $\pm1.2$             | $1.20\pm0.10$      |
| $.81\pm0.73$ $-1.54\pm0.37$ $0.01\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.61$ $1.55\pm0.15$ $-1.29\pm0.91$ $-1.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $3\pm 0.18$ 0.49 $\pm 1.03$          | $1.23\pm0.12$      |
| $(.49\pm0.28 -1.43\pm0.21 0.51\pm0.51)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.99  1.58 \pm 0.36  -1.12 \pm 0.76  -1.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $3\pm 0.09$ $0.24\pm 1.20$           | $1.31\pm0.14$      |
| $0.05\pm0.86$ $-1.41\pm0.24$ $0.11\pm0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.35  1.66 \pm 0.21  -0.68 \pm 0.98  -1.7i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8±0.14 -0.14±1.1                     | $2 1.27 \pm 0.16$  |
| $.61\pm0.53$ $-1.28\pm0.12$ $-0.37\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.74  1.80 \pm 0.46  -1.40 \pm 0.66  -1.8.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2\pm 0.09$ $0.52\pm 0.7$            | $1.25\pm0.15$      |
| $(52\pm0.51 - 1.32\pm0.10 - 0.50\pm0.00)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.72  1.77 \pm 0.41  -1.39 \pm 0.69  -1.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3±0.08 0.40±0.7                      | $1.23\pm0.13$      |
| $(52\pm0.56 - 1.22\pm0.12 0.10\pm0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $.37$ 1.79 $\pm$ 0.80 $-1.36\pm$ 0.84 $-1.7i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8±0.17 0.26±0.50                     | $1.38\pm0.19$      |
| $0.11\pm0.61$ $-1.19\pm0.05$ $0.27\pm3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.59  1.73 \pm 0.68  0.67 \pm 1.25  -1.7.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1\pm 0.37 - 0.21\pm 0.6$            | $0  1.29 \pm 0.18$ |
| $1.10\pm0.35$ $-1.25\pm0.17$ $0.40\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.48  1.79 \pm 0.41  0.61 \pm 0.68  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -1.63  -$ | 8±0.29 -0.65±0.8                     | $7  1.42 \pm 0.23$ |
| $1.42\pm0.28$ $-1.53\pm0.27$ $0.35\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.64  1.62 \pm 0.27  0.48 \pm 0.61  -1.74$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0\pm 0.29 - 0.39\pm 1.0$            | $7  1.42 \pm 0.27$ |
| $0.49\pm0.30$ $-1.52\pm0.24$ $-0.91\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.12  1.62 \pm 0.42  -0.36 \pm 0.61  -1.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $3\pm 0.10 - 0.49\pm 0.4$            | $7 1.51 \pm 0.37$  |
| $0.44\pm0.37$ $-1.51\pm0.33$ $-0.11\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.11  1.74 \pm 0.22  -0.28 \pm 0.76  -1.6.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1\pm0.11 - 0.54\pm0.4$              | $0  1.55 \pm 0.35$ |
| $0.49\pm0.20$ $-1.32\pm0.17$ $-0.29\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.15$ $1.87\pm0.66$ $1.08\pm1.08$ $-1.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $7\pm0.10 - 0.40\pm1.0$              | $1.54\pm0.48$      |
| $0.81 \pm 0.18 - 1.42 \pm 0.25 1.19 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.21  1.76\pm0.75  -0.08\pm0.90  -1.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7±0.25 -0.56±0.1                     | $0  1.59 \pm 0.37$ |
| $0.40\pm0.39$ $-1.46\pm0.07$ $0.52\pm1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $51  1.74\pm0.40  -0.33\pm0.73  -1.56$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8±0.40 -0.40±0.3                     | $7  1.67 \pm 0.37$ |
| $0.40\pm0.35$ $-1.45\pm0.10$ $0.71\pm1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $36  1.76 \pm 0.47  -0.48 \pm 0.62  -1.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7±0.39 -0.44±0.3                     | $5 1.66 \pm 0.37$  |
| $(.33\pm0.44  -1.27\pm0.10  0.30\pm1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $.07$ 1.94 $\pm$ 0.49 $-0.45\pm$ 1.25 $-1.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $7\pm0.51 - 0.10\pm0.7$              | $2 1.75 \pm 0.33$  |
| 0.28±0.88 -1.32±0.08 0.22±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.17  1.82 \pm 0.50  -0.69 \pm 0.78  -1.5.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2\pm 0.45 - 0.16\pm 0.7$            | $2 1.71 \pm 0.35$  |
| $0.22 \pm 0.89 - 1.23 \pm 0.06 0.03 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $4\pm 0.49 - 0.19\pm 0.6$            | $5 1.70\pm0.33$    |
| $0.29\pm0.68$ $-1.17\pm0.14$ $0.11\pm0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.01  1.82 \pm 0.63  -0.66 \pm 0.89  -1.5^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | 1 1 66±0 31        |